Experimental Study on the Comparison of Resisting Semi-Armour-Piercing Projectile Penetration Ability for Steel Mesh, Steel Fiber and Steel Composites

2012 ◽  
Vol 253-255 ◽  
pp. 425-431
Author(s):  
Yun Feng Wang ◽  
Yao Hua Wang

A new protective material-steel mesh reinforced concrete was developed under the condition of modern high-tech weapon development. The comparative tests were conducted with steel fiber reinforced and steel reinforced concrete. The enhancement characteristics of three composites were analyzed in the respects of base material, the distribution of reinforced material and its bonding. The results indicate that steel mesh reinforced concrete is the most effective composite resisting penetration.

2020 ◽  
Vol 24 (1) ◽  
pp. 25-41
Author(s):  
Weichang Pei ◽  
Daiyu Wang ◽  
Xuan Wang ◽  
Zhenyu Wang

Fiber-reinforced polymer tube–confined steel fiber–reinforced concrete column is a novel composite column proposed recently, which consists of a traditional steel-reinforced concrete column and an external glass fiber–reinforced plastic tube for lateral confinement. In order to investigate the axial compression behavior of steel fiber–reinforced concrete columns, a total of 16 square specimens were fabricated and tested under axial monotonic and cyclic compressive loading. Three different configurations of inner shaped steels, including cross-shaped, box-shaped with wielding, and box-shaped without wielding were considered. Two thicknesses of glass fiber–reinforced concrete tubes were also considered as the main experimental parameters. On the basis of test results, a thorough analysis of the failure process based on strain analysis was discussed. The test results showed that steel fiber–reinforced concrete columns exhibited higher ductility and load capacity compared with fiber-reinforced plastic–confined plain concrete columns. Two quantitative indexes were proposed to measure the confinement of steel fiber–reinforced concretes. The axial cyclic mechanical behaviors were discussed through comparative analysis with monotonic behaviors. The remnant strains and modulus of the cyclic behaviors were also discussed.


2012 ◽  
Vol 252 ◽  
pp. 280-284
Author(s):  
Xiao Qing Yu ◽  
Mao Lin ◽  
Guang Long Geng ◽  
Na Wei ◽  
Li Jia

This study through a large number of experiments on the mechanical properties of steel fiber reinforced concrete, with reference to the relevant test data test with specimen, concrete static compression, splitting tensile, flexural comparative tests, comparative analysis of steel fiber on the mechanical properties of concrete.


2021 ◽  
Vol 13 (9) ◽  
pp. 168781402110449
Author(s):  
Xiwu Zhou ◽  
Wen Zhang ◽  
Xiangyu Wang

In the present study, based on the previous impact resistance test study results regarding stainless steel reinforced concrete beams, six steel fiber stainless-steel reinforced concrete (SFSRC) beams were subjected to drop-hammer impact tests using an advanced ultra-high heavy multi-function drop hammer impact test system. The goal was to further investigate the mechanical properties of SFSRC beams under impact load conditions. The influencing effects of the steel fiber content and impact velocity levels on the impact resistance mechanical properties of SFSRC beams were analyzed. A digital image correlation method (DIC) was used to analyze the full-field strain and displacement values of the specimens. The results revealed that the steel fibers had significantly enhanced the overall energy dissipation and crack resistance capacities of the specimens, and also improved the brittleness of the stainless steel reinforced concrete beams. In addition, the addition of steel fibers effectively inhibited the local damages of the beam-hammer contact areas. In this study’s experiments, the impact resistance of the beams was observed to be the highest when the fiber content was 2.0%. The internal force formula of the local response stage of the beams showed that the shearing effects had significant impacts on the overall failure modes of the specimens. It was found that with the increases in impact velocity, the failure mode of the SFSRC beams transitioned from bending failure to shear failure, and then to a punching shear failure mode. The DIC results indicated that the addition of steel fiber improved the bonding performances between the concrete matrixes, along with inhibiting the crack development rates through the bond force between the fiber and the concrete.


2011 ◽  
Vol 2 (1) ◽  
pp. 1-12
Author(s):  
A. Hegyi ◽  
H. Vermeşan ◽  
V. Rus

Abstract In this paper we wish to present the numerical model elaborated in order to simulate some physical phenomena that influence the general deterioration of steel, whether hot dip galvanized or not, in reinforced concrete. We describe the physical and mathematical models, establishing the corresponding equation system, the initial and boundary conditions. We have also presented the numeric model associated to the mathematical model and the numeric methods of discretization and solution of the differential equations system that describes the mathematical model.


2017 ◽  
Vol 59 (7-8) ◽  
pp. 653-660 ◽  
Author(s):  
Wang Yan ◽  
Ge Lu ◽  
Chen Shi Jie ◽  
Zhou Li ◽  
Zhang Ting Ting

Sign in / Sign up

Export Citation Format

Share Document