Study on Natural Vibration Characteristic of Spiral Casing Structure in Hydraulic Turbine Based on Acoustic-Structural Coupled Theory

2012 ◽  
Vol 256-259 ◽  
pp. 2533-2536
Author(s):  
Ze Li ◽  
Zhi Lin Liang ◽  
Li Xiang Zhang

Based on the strong interaction method that combines FEM with acoustic theory, the finite element dynamic equations of spiral casing structure are built, which provides the basis for analyzing self-olsillatin characteristics of spiral casing structure. The self-olsillatin characteristics of structure are calculated with the method. The natural vibration frequencies, and mode shapes are obtained.

2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Piotr Cupiał

This paper discusses a perturbation approach to the calculation of the natural frequencies and mode shapes for both the displacement and the electrostatic potential through-thickness vibration of an infinite piezoelectric plate. The problem is formulated within the coupled theory of linear piezoelectricity. It is described by a set of two coupled differential equations with unknown thickness displacement, the electrostatic potential and a general form of boundary conditions. A consistent perturbation solution to the natural vibration problem is described. An important element not present in the classical eigenvalue perturbation solution is that the small parameter appears in the boundary conditions; a way to handle this complication has been discussed. The natural frequencies and mode shapes obtained using the perturbation approach are compared to exact solutions, demonstrating the effectiveness of the proposed method. The advantage of the perturbation method derives from the fact that coupled piezoelectric results can be obtained from the elastic solution during the postprocessing stage.


2014 ◽  
Vol 13 (2) ◽  
pp. 173-182
Author(s):  
Tadeusz Chmielewski ◽  
Piotr Górski ◽  
Peter Breuer ◽  
Eduard Konopka

In the paper, the theoretical natural vibration frequencies and mode shapes of the chimney with and without the flexibility of soil were compared with the experimental results of two field tests carried out in December 2008 and in May 2011 by using GPS technology. Three GPS rover receivers were installed at three various levels. The GPS was able to measure only the first natural frequencies and mode shapes of the chimney. The damping ratios and maximum displacements of the chimney using the band-pass filtering technique for both tests were also determined. The measured dynamic characteristics are important for the assessment of the technical state of the chimney. The estimated dynamic characteristics, using GPS measurements, are compatible with the computed results.


2005 ◽  
Vol 72 (5) ◽  
pp. 797-800 ◽  
Author(s):  
Jae-Hoon Kang ◽  
Arthur W. Leissa

A three-dimensional (3D) method of analysis is presented for determining the free vibration frequencies and mode shapes of thick, complete (not truncated) conical shells of revolution in which the bottom edges are normal to the midsurface of the shells based upon the circular cylindrical coordinate system using the Ritz method. Comparisons are made between the frequencies and the corresponding mode shapes of the conical shells from the authors' former analysis with bottom edges parallel to the axial direction and the present analysis with the edges normal to shell midsurfaces.


2000 ◽  
Author(s):  
C. Gibbons ◽  
R. N. Miles

Abstract A miniature silicon condenser microphone diaphragm has been designed that exhibits good predicted directionality, sensitivity, and reliability. The design was based on the structure of a fly’s ear (Ormia ochracea) that has highly directional hearing through mechanical coupling of the eardrums. The diaphragm that is 1mm × 2mm × 20 microns is intended to be fabricated out of polysilicon through microelectromechanical micromachining. It was designed through the finite-element method in ANSYS in order to build the necessary mode shapes and frequencies into the mechanical behavior of the design. Through postprocessing of the ANSYS data, the diaphragm’s response to an arbitrary sound source, sensitivity, robustness, and Articulation Index - Directivity Index (AI-DI) were predicted. The design should yield a sensitivity as high as 100 mV/Pa, an AI-DI of 4.764 with Directivity Index as high as 6 between 1.5 and 5 kHz. The diaphragm structure was predicted be able to withstand a sound pressure level of 151.74 dB. The sound level that would result in collapse of the capacitive sensor is 129.9 dB.. The equivalent sound level due to the self-noise of the microphone is predicted to be 30.8 dBA.


2021 ◽  
pp. 107754632110377
Author(s):  
Fengxia He ◽  
Zhong Luo ◽  
Lei Li ◽  
Xiaoxia Zhang

Similitude laws can be used to extrapolate the vibration characteristic of a small, inexpensive, and easily tested model into structural behavior for the full-size prototype. In this article, a systematic similitude approach is proposed to predict the natural frequency, mode shape, and vibration response of composite laminated plates. The emphasis of this article is to predict the vibration characteristic of composite laminated plates in an effective and convenient way. Sensitivity analysis (SA) is introduced to improve the prediction accuracy of natural frequency. For distortion similarity, the prediction accuracy is improved close to 5%. Modal assurance criterion (MAC) measures the consistency of mode shapes of the full-size prototype and scaled models. The influence of stacking sequence on mode consistency is investigated. Similitude based on virtual mode and statistical energy (SVMSE) is proposed to extrapolate the transient response of the prototype to simulate the shock environment, such as satellite–rocket separation, etc. In conclusion, the prediction accuracy of natural frequency, mode consistency, and response coincidence are considered comprehensively to extrapolate the vibration characteristic of the full-size laminated plates.


Author(s):  
D J Peel ◽  
C M Bingham ◽  
Y Wu ◽  
D Howe

Traditionally, active magnetic bearing (AMB) systems are designed as an integral component of machines having generally complex dynamic characteristics. An AMB supported rotor has been tested over a speed range that included system natural vibration frequencies. A linear stiffness and viscous damping AMB characteristic with constant coefficients was identified which was independent of the overall system characteristics and which can thus provide simple and transferable data for a machine designer.


2009 ◽  
Vol 09 (04) ◽  
pp. 687-709 ◽  
Author(s):  
XINQUN ZHU ◽  
HONG HAO

Studied herein are the signatures of nonlinear vibration characteristics of damaged reinforced concrete structures using the wavelet transform (WT). A two-span RC slab built in 2003 was tested to failure in the laboratory. Vibration measurements were carried out at various stages of structural damage. The vibration frequencies, mode shapes, and damping ratios at each loading stage were extracted and analyzed. It is found that the vibration frequencies are not sensitive to small damages, but are good indicators when damage is severe. The dynamic responses are also analyzed in the time–frequency domain by WT and the skeleton curve is constructed to describe the nonlinear characteristics in the reinforced concrete structures. The results show that the skeleton curves are good indicators of damage in the reinforced concrete structures because they are more sensitive to small damages than vibration frequencies.


2012 ◽  
Vol 160 ◽  
pp. 64-68
Author(s):  
Hui Fang Xue ◽  
You Wang

Based on the vibration problem of the plane gate in the inverted siphon exit of a large-scale hydraulic project in northern Xinjiang, the software ANSYS is used to build the entity model and finite element model. Considering the influence of fluid-solid coupling, the self-vibration characteristics of the gate in the water and without water are analyzed. The first six self-vibration frequencies and vibration modes of the gate are calculated. The results show that the height of water has a significant impact on the self-vibration frequencies of the plane gate. The first order natural frequency on the condition of small opening is decreased by 28.5%. It shows that the structure of the plane gate must be improved.


Sign in / Sign up

Export Citation Format

Share Document