FEM Analysis of Concrete Filled Square Steel Tubular Columns with Energy Dissipation Plate

2012 ◽  
Vol 256-259 ◽  
pp. 666-669
Author(s):  
Cun Hui ◽  
Wan Lin Cao

In order to improve the seismic energy dissipation performance of concrete filled square steel tubular (CFST) columns, the structural measure about puting the additional energy dissipation plat at the bottom of the CFST columns where bears more stress, was proposed. Finite element anylsis of 10 CFST columns with different structural measure were performed under the same axial compression, selecting the thickness and height of the energy dissipation plate as parameters. On the basis of finite element anylasis, this paper, which obtained load-displacement curves of each finite element model, analyzed and compared the bearing capacity of each model. The results show that: comparing to the ordinary CFST columns, the columns with energy dissipation plat show better about bearing capacity and seismic performance, the height of the energy dissipation has a significant effect on bearing capacity but the thickness has less impact.

2021 ◽  
Vol 11 (24) ◽  
pp. 11645
Author(s):  
Anton Chepurnenko ◽  
Batyr Yazyev ◽  
Besarion Meskhi ◽  
Alexey Beskopylny ◽  
Kazbek Khashkhozhev ◽  
...  

Concrete-filled steel tubular (CFST) columns are widely used in construction due to effective resistance to compression and bending joint action. However, currently, there is no generally accepted effective calculation method considering both nonlinearities of the materials and lateral compression. The article proposes the finite element analysis method of concrete-filled steel tubular columns in a physically nonlinear formulation by reducing a three-dimensional problem to a two-dimensional one based on the hypothesis of plane sections. The equations of Geniev’s concrete theory of plasticity are used as relations establishing the relationship between stresses and strains. The technique was tested by comparing the solution with the calculation in a three-dimensional formulation in the LIRA-SAPR software package and with the experimental data of A.L. Krishan and A.I. Sagadatov. It has been established that the effective area of operation of circular-section columns are small eccentricities of the longitudinal force. The proposed approach can be applied to analyzing the stress–strain state and bearing capacity of pipe-concrete columns of arbitrary cross-sections. There are no restrictions on the composition of concrete, and the shell material can be steel and fiberglass.


2012 ◽  
Vol 256-259 ◽  
pp. 620-623
Author(s):  
Cun Hui ◽  
Wan Lin Cao ◽  
Hong Ying Dong

The structural measures about puting the additional energy dissipation plat at the bottom of the CFST columns where bears more stress, was proposed to improve the seismic energy dissipation performance of concrete filled circular steel tubular (CFST) columns. Selecting the axial compression ratio and height of the energy dissipation plate as parameters, finite element anylsis of 8 circular CFST columns with different structural measure were performed. On the basis of finite element anylasis results, this paper, which obtained load-displacement curves of each finite element model, analyzed and compared the bearing capacity of each model. The results show that: comparing to the ordinary circular CFST columns, the columns with energy dissipation plat show much better performence about bearing capacity and seismic capacity, the height of the energy dissipation has a great effect on bearing capacity but the bearing capacity is inversely proportional to the axial compression ratio.


2014 ◽  
Vol 501-504 ◽  
pp. 1633-1638
Author(s):  
Jun Huang ◽  
Yi Chao Zhang ◽  
Shao Bin Dai

By using finite element software ABAQUS, the nonlinear finite element analysis of earthquake resistance behavior of T-shaped concrete-filled rectangular composite steel tubular columns is carried out, furthermore, the analysis results and the corresponding experiment results are compared. The results indicate that the calculated value of ultimate bearing capacity is less than the experimental value, and the results of FEM analysis can match the experiment results better, and thus, it can better reflect the earthquake resistance behaviors of the specimens.


2011 ◽  
Vol 368-373 ◽  
pp. 441-447
Author(s):  
Jun Huang ◽  
Shao Bin Dai ◽  
Ji Xiong Liu

By using finite element software ABAQUS, the nonlinear finite element analysis of earthquake resistance behavior of L-shaped concrete-filled rectangular composite steel tubular columns is carried out, furthermore, the analysis results and the corresponding experimental results are compared. The results indicate that the finite element calculated value of ultimate bearing capacity is less than experimental value; axial compression ratio of the specimen has little affect on its ultimate bearing capacity and earthquake resistance behaviors; the results of FEM analysis can match the experiment results better, and thus, it can better reflect the earthquake resistance behaviors of the specimens.


2019 ◽  
Vol 48 (3) ◽  
pp. 224-248
Author(s):  
Pablo N. Zitelli ◽  
Gabriel N. Curtosi ◽  
Jorge Kuster

ABSTRACT Tire engineers are interested in predicting rolling resistance using tools such as numerical simulation and tests. When a car is driven along, its tires are subjected to repeated deformation, leading to energy dissipation as heat. Each point of a loaded tire is deformed as the tire completes a revolution. Most energy dissipation comes from the cyclic loading of the tire, which causes the rolling resistance in addition to the friction force in the contact patch between the tire and road. Rolling resistance mainly depends on the dissipation of viscoelastic energy of the rubber materials used to manufacture the tires. To obtain a good rolling resistance, the calculation method of the tire finite element model must take into account temperature changes. It is mandatory to calibrate all of the rubber compounds of the tire at different temperatures and strain frequencies. Linear viscoelasticity is used to model the materials properties and is found to be a suitable approach to tackle energy dissipation due to hysteresis for rolling resistance calculation.


2020 ◽  
Vol 203 ◽  
pp. 109863 ◽  
Author(s):  
Lucas Ribeiro dos Santos ◽  
Hermano de Sousa Cardoso ◽  
Rodrigo Barreto Caldas ◽  
Lucas Figueiredo Grilo

2014 ◽  
Vol 919-921 ◽  
pp. 1794-1800
Author(s):  
Xin Zhi Zheng ◽  
Xin Hua Zheng

Abstract: 7 square steel tubular columns were tested to discuss the ultimate axial bearing capacity, ductility performance and the steel consumption under stiffened by steel belts and binding bars of different cross-sections. Test results indicate that only by increasing fewer amounts of steel usage, stiffened square CFST columns with binding bars can not only improve the overall effects of restraint and alleviate regional local buckling between the binding bars, but also improve the bearing capacity of concrete filled square steel tubular columns. The utility benefits and the economical benefit is considerable, deserving extensive use.


2014 ◽  
Vol 915-916 ◽  
pp. 146-149
Author(s):  
Yong Sheng Wang ◽  
Li Hua Wu

The finite element model of the space KX-Joint was established using ANSYS software, and the failure mode and ultimate bearing capacity of KX-joint were researched. Calculation results show that the surface of chord wall on the roots of compression web members was into the plastic in K plane, and the holding pole without the plastic area and the local buckling failure happened in the surface of chord wall on the roots of Compression Web Members in X plane; The bearing capacity of the joint increased with the Chord diameter, which was appears in the form of power function.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Xianglong Liu ◽  
Jicheng Zhang ◽  
Hailin Lu ◽  
Ning Guan ◽  
Jiahao Xiao ◽  
...  

The mechanical properties of T-shaped concrete-filled steel tubular (TCFST) short columns under axial compression after elevated temperature are investigated in this paper. A total of 30 TCFST short columns with different temperature (T), steel ratio (α), and duration of heating (t) were tested. The TCFST column was directly fabricated by welding two rectangular steel tubes together. The study mainly investigated the failure modes, the ultimate bearing capacity, the load-displacement, and the load-strain performance of the TCFST short columns. Experimental results indicate that the rectangular steel tubes of the TCFST column have deformation consistency, and the failure mode consists of local crack, drum damage, and shear failure. Additionally, the influence of high temperature on the residual bearing capacity of the TCFST is significant, e.g., a higher temperature can downgrade the ultimate bearing capacity. Finally, a finite element model (FEM) is developed to simulate the performance of the TCFST short columns under elevated temperature, and the results agree with experimental values well. Overall, this investigation can provide some guidance for future studies on damage assessment and reinforcement of the TCFST columns.


2018 ◽  
Vol 8 (9) ◽  
pp. 1602 ◽  
Author(s):  
Zhao Yang ◽  
Chengxiang Xu

Local buckling in steel tubes was observed to be capable of reducing the ultimate loads of thin-walled concrete-filled steel-tube (CFST) columns under axial compression. To strengthen the steel tubes, steel bars were proposed in this paper to be used as stiffeners fixed onto the tubes. Static-loading tests were conducted to study the compression behavior of square thin-walled CFST columns with steel bar stiffeners placed inside or outside the tube. The effect and feasibility of steel bar stiffeners were studied through the analysis of failure mode, load–displacement relationship, ultimate load, ductility, and local buckling. Different setting methods of steel bars were compared as well. The results showed that steel-bar stiffeners proposed in this paper can be effective in delaying local buckling as well as increasing the bearing capacity of the columns, but will decrease the ductility of the columns. In order to obtain a higher bearing capacity of columns, steel bars with low stiffness should be placed inside and steel bars with high stiffness should be placed outside of the steel tubes. The study is helpful in providing reference to the popularization and application of this new structural measure to avoid or delay the local buckling of thin-walled CFST columns.


Sign in / Sign up

Export Citation Format

Share Document