Research on Micro-Certificate Based Security System for Internet of Things

2012 ◽  
Vol 263-266 ◽  
pp. 3125-3129
Author(s):  
Li Ping Du ◽  
Ying Li ◽  
Guan Ning Xu ◽  
Fei Duan

The rapid development of internet of things puts forward urgent needs for security. The security system must be studied to adapt to the characteristics of the internet of things. The micro- certificate based security system for internet of things takes full account of the security characteristics of things, and uses the symmetric cryptographic algorithms and security chip technology. This security system can meet the security requirements for large-scale sensor’s authentication, signification and encryption/decryption in internet of things, and improve the security performance of internet of things greatly.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Weiping Ouyang ◽  
Chunguang Ma ◽  
Guoyin Zhang ◽  
Keming Diao

The rapid development of the Internet of Things has made the issue of privacy protection even more concerning. Privacy protection has affected the large-scale application of the Internet of Things. Fully Homomorphic Encryption (FHE) is a newly emerging public key encryption scheme, which can be used to prevent information leakage. It allows performing arbitrary algebraic operations on data which are encrypted, such that the operation performed on the ciphertext is directly transformed into the corresponding plaintext. Recently, overwhelming majority of FHE schemes are confined to single-bit encryption, whereas how to achieve a multibit FHE scheme is still an open problem. This problem is partially (rather than fully) solved by Hiromasa-Abe-Okamoto (PKC′15), who proposed a packed message FHE scheme which only supports decryption in a bit-by-bit manner. Followed by that, Li-Ma-Morais-Du (Inscrypt′16) proposed a multibit FHE scheme which can decrypt the ciphertext at one time, but their scheme is based on dual LWE assumption. Armed with the abovementioned two schemes, in this paper, we propose an efficient packed message FHE that supports the decryption in two ways: single-bit decryption and one-time decryption.


2021 ◽  
Vol 11 (10) ◽  
pp. 4580
Author(s):  
Amir Djenna ◽  
Saad Harous ◽  
Djamel Eddine Saidouni

As a new area of technology, the Internet of Things (IoT) is a flagship and promising paradigm for innovating society. However, IoT-based critical infrastructures are an appealing target for cybercriminals. Such distinctive infrastructures are increasingly sensitive to cyber vulnerabilities and subject to many cyberattacks. Thus, protecting these infrastructures is a significant issue for organizations and nations. In this context, raising the cybersecurity posture of critical cyber infrastructures is an extremely urgent international issue. In addition, with the rapid development of adversarial techniques, current cyber threats have become more sophisticated, complicated, advanced and persistent. Thus, given these factors, prior to implementing efficient and resilient cybersecurity countermeasures, identification and in-depth mapping of cyber threats is an important step that is generally overlooked. Therefore, to solve cybersecurity challenges, this study presents a critical analysis of the most recent cybersecurity issues for IoT-based critical infrastructures. We then discuss potential cyber threats and cyber vulnerabilities and the main exploitation strategies adopted by cybercriminals. Further, we provide a taxonomy of cyberattacks that may affect critical cyber infrastructures. Finally, we present security requirements and some realistic recommendations to enhance cybersecurity solutions.


Author(s):  
I.O. Sushyn ◽  
D.A. Minochkin

The article considers the method of increasing the security of Internet of Things technologies. Users fear the consequences of Internet security violations. Therefore, digital security must be designed from zero and at all points of the system so vulnerabilities do not jeopardize the whole system in a certain part. The risk must be reduced throughout the life cycle, especially in view of its scaling and geographical expansion. The Internet of Things consists of a large number of inexpensive devices. IoT devices usually have limited memory and battery power, which gives very limited computing and communication capabilities. The use of encryption/decryption algorithms should not require large resources, and the frequency range is limited. It is also a large-scale network that supports mass connections. Network transmission protocols must include many new features, such as multi-transient routing, shared relay, dynamic access, and other to meet this demand. It is extremely difficult to manage and distribute private keys with this network setup. A variety of usage scenarios require different QoS and security levels. Nowadays IoT plays an important role in many scenarios and has great potential for further dissemination. There is a need to increase the efficiency of a particular enterprise, processes, so the number of interactive things that create smart areas (houses, offices, warehouses, cities) is growing. The implementation of this areas reaches a variety of technologies, which vulnerable from the found attacks over time, leading to significant losses, as data and time. There are many suggestions that address target issue after finding a vulnerability, but this may not be effective enough. Therefore, it was proposed to create a method that can solve a set of problems simultaneously by combining PKI secure authentication and honeypots. It will not only detect new vulnerabilities and attacks faster, but also waste attackers' resources (all captured attacks will be identified and attacker profiles created).


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 916 ◽  
Author(s):  
Yunfa Li ◽  
Yifei Tu ◽  
Jiawa Lu ◽  
Yunchao Wang

With the rapid development of the Internet of Things (IoT), the number of IoT devices has increased exponentially. Therefore, we have put forward higher security requirements for the management, transmission, and storage of massive IoT data. However, during the transmission process of IoT data, security issues, such as data theft and forgery, are prone to occur. In addition, most existing data storage solutions are centralized, i.e., data are stored and maintained by a centralized server. Once the server is maliciously attacked, the security of IoT data will be greatly threatened. In view of the above-mentioned security issues, a security transmission and storage solution is proposed about sensing image for blockchain in the IoT. Firstly, this solution intelligently senses user image information, and divides these sensed data into intelligent blocks. Secondly, different blocks of data are encrypted and transmitted securely through intelligent encryption algorithms. Finally, signature verification and storage are performed through an intelligent verification algorithm. Compared with the traditional IoT data transmission and centralized storage solution, our solution combines the IoT with the blockchain, making use of the advantages of blockchain decentralization, high reliability, and low cost to transfer and store users image information securely. Security analysis proves that the solution can resist theft attacks and ensure the security of user image information during transmission and storage.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 545
Author(s):  
Risabh Mishra ◽  
M Safa ◽  
Aditya Anand

Recent advances in wireless communication technologies and automobile industry have triggered a significant research interest in the field of Internet of Vehicles over the past few years.The advanced period of the Internet of Things is guiding the development of conventional Vehicular Networks to the Internet of Vehicles.In the days of Internet connectivity there is need to be in safe and problem-free environment.The Internet of Vehicles (IoV) is normally a mixing of three networks: an inter-vehicleNetwork, an intra-vehicle network, and a vehicle to vehicle network.Based on  idea of three networks combining into one, we define  Internet of Vehicles as a large-scale distributed system to wireless communication and information exchange between vehicle2X (X: vehicle, road, human and internet).It is a combined   network for supporting intelligent traffic management, intelligent dynamic information service, and intelligent vehicle control, representation of an application of the Internet of Things (IoT) technology for intelligent transportation system (ITS).  


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Federica Paganelli ◽  
David Parlanti

Current trends towards the Future Internet are envisaging the conception of novel services endowed with context-aware and autonomic capabilities to improve end users’ quality of life. The Internet of Things paradigm is expected to contribute towards this ambitious vision by proposing models and mechanisms enabling the creation of networks of “smart things” on a large scale. It is widely recognized that efficient mechanisms for discovering available resources and capabilities are required to realize such vision. The contribution of this work consists in a novel discovery service for the Internet of Things. The proposed solution adopts a peer-to-peer approach for guaranteeing scalability, robustness, and easy maintenance of the overall system. While most existing peer-to-peer discovery services proposed for the IoT support solely exact match queries on a single attribute (i.e., the object identifier), our solution can handle multiattribute and range queries. We defined a layered approach by distinguishing three main aspects: multiattribute indexing, range query support, peer-to-peer routing. We chose to adopt an over-DHT indexing scheme to guarantee ease of design and implementation principles. We report on the implementation of a Proof of Concept in a dangerous goods monitoring scenario, and, finally, we discuss test results for structural properties and query performance evaluation.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3584 ◽  
Author(s):  
Rania Baashirah ◽  
Abdelshakour Abuzneid

Radio Frequency Identification (RFID) is one of the leading technologies in the Internet of Things (IoT) to create an efficient and reliable system to securely identify objects in many environments such as business, health, and manufacturing areas. Recent RFID authentication protocols have been proposed to satisfy the security features of RFID communication. In this article, we identify and review some of the most recent and enhanced authentication protocols that mainly focus on the authentication between a reader and a tag. However, the scope of this survey includes only passive tags protocols, due to the large scale of the RFID framework. We examined some of the recent RFID protocols in term of security requirements, computation, and attack resistance. We conclude that only five protocols resist all of the major attacks, while only one protocol satisfies all of the security requirements of the RFID system.


2018 ◽  
Vol 33 (6) ◽  
pp. 749-767 ◽  
Author(s):  
Seppo Leminen ◽  
Mervi Rajahonka ◽  
Mika Westerlund ◽  
Robert Wendelin

Purpose This study aims to understand their emergence and types of business models in the Internet of Things (IoT) ecosystems. Design/methodology/approach The paper builds upon a systematic literature review of IoT ecosystems and business models to construct a conceptual framework on IoT business models, and uses qualitative research methods to analyze seven industry cases. Findings The study identifies four types of IoT business models: value chain efficiency, industry collaboration, horizontal market and platform. Moreover, it discusses three evolutionary paths of new business model emergence: opening up the ecosystem for industry collaboration, replicating the solution in multiple services and return to closed ecosystem as technology matures. Research limitations/implications Identifying business models in rapidly evolving fields such as the IoT based on a small number of case studies may result in biased findings compared to large-scale surveys and globally distributed samples. However, it provides more thorough interpretations. Practical implications The study provides a framework for analyzing the types and emergence of IoT business models, and forwards the concept of “value design” as an ecosystem business model. Originality/value This paper identifies four archetypical IoT business models based on a novel framework that is independent of any specific industry, and argues that IoT business models follow an evolutionary path from closed to open, and reversely to closed ecosystems, and the value created in the networks of organizations and things will be shareable value rather than exchange value.


Author(s):  
Issmat Shah Masoodi ◽  
Bisma Javid

There are various emerging areas in which profoundly constrained interconnected devices connect to accomplish specific tasks. Nowadays, internet of things (IoT) enables many low-resource and constrained devices to communicate, do computations, and make smarter decisions within a short period. However, there are many challenges and issues in such devices like power consumption, limited battery, memory space, performance, cost, and security. This chapter presents the security issues in such a constrained environment, where the traditional cryptographic algorithms cannot be used and, thus, discusses various lightweight cryptographic algorithms in detail and present a comparison between these algorithms. Further, the chapter also discusses the power awakening scheme and reference architecture in IoT for constrained device environment with a focus on research challenges, issues, and their solutions.


2018 ◽  
Vol 7 (4.36) ◽  
pp. 700
Author(s):  
N. Koteswara Rao ◽  
Gandharba Swain

The proliferation of smart objects with capability of sensing, processing and communication has grown in recent years. In this scenario, the Internet of Things (IoT) connects these objects to the Internet and provides communication with users and devices. IoT enables a huge amount of new applications, with which academics and industries can benefit, such as smart cities, health care and automation. In this environment, compose of constrained devices, the widespread adoption of this paradigm depends of security requirements like secure communication between devices, privacy and anonymity of its users. This paper presents the main security challenges and solutions to provide authentication and authorization on the Internet of Things. 


Sign in / Sign up

Export Citation Format

Share Document