An Easy Calculation Method on Sweep Efficiency of Chemical Flooding

2013 ◽  
Vol 275-277 ◽  
pp. 496-501
Author(s):  
Fu Qing Yuan ◽  
Zhen Quan Li

According to the geological parameters of Shengli Oilfield, sweep efficiency of chemical flooding was analyzed according to injection volume, injection-production parameters of polymer flooding or surfactant-polymer compound flooding. The orthogonal design method was employed to select the important factors influencing on expanding sweep efficiency by chemical flooding. Numerical simulation method was utilized to analyze oil recovery and sweep efficiency of different flooding methods, such as water flooding, polymer flooding and surfactant-polymer compound flooding. Finally, two easy calculation models were established to calculate the expanding degree of sweep efficiency by polymer flooding or SP compound flooding than water flooding. The models were presented as the relationships between geological parameters, such as effective thickness, oil viscosity, porosity and permeability, and fluid parameters, such as polymer-solution viscosity and oil-water interfacial tension. The precision of the two models was high enough to predict sweep efficiency of polymer flooding or SP compound flooding.

2017 ◽  
Vol 10 (1) ◽  
pp. 94-107 ◽  
Author(s):  
Kaoping Song ◽  
Ning Sun ◽  
Yanfu Pi

Background: Polymer flooding is the most commonly applied chemical enhanced-oil-recovery technique in offshore oilfields. However, there are challenges and risks in applying the technology of polymer flooding to offshore heavy oil development. Objective: This paper compared the spread law and the displacement effect of different injection modes and validated the feasibility of enhancing oil recovery by variable concentrations polymer flooding. Method: Two types of laboratory experiments were designed by using micro etching glass models and heterogeneous artificial cores. Furthermore, in order to determine a better polymer flooding mode, the displacement results, displacement characteristic curves and oil saturation distribution of heterogeneous artificial cores were also compared, respectively. Results: The experimental results showed that the recovery of variable concentrations polymer flooding was higher than that of constant concentration polymer flooding, under conditions of same total amount of polymer and similar water flooding recovery. Its sweep efficiency and displacement efficiency were also significantly higher than those of constant concentration polymer flooding. Moreover, variable concentrations polymer flooding had lower peak pressure and was at lower risk for reaching the formation fracture pressure. Conclusion: As a consequence, variable concentrations polymer flooding has certain feasibility for heterogeneous reservoir in offshore oilfields, and can improve interlayer heterogeneity to further tapping remaining oil in medium and low permeability layer. Conclusions of this paper can provide reference for the field application of polymer flooding in offshore oilfields.


2015 ◽  
Vol 8 (1) ◽  
pp. 392-397 ◽  
Author(s):  
Pi Yanfu ◽  
Guo Xiaosai ◽  
Pi Yanming ◽  
Wu Peng

Aim at the reservoir characteristics of Suizhong 36-1 Oil Field, this paper has developed typical two-dimensional physical model in parallel between the layers and studied the macroscopic displacement effect of polymer flooding and binary compound flooding, and studied the interlayer spread law and oil displacement efficiency of polymer flooding and binary combination flooding by using saturation monitoring system deeply. The results show that: when the multiples of pore volume injected for polymer was 0.3 after water flooding, the recovery efficiency increased by 10.3%, and when the multiples of pore volume injected for binary combination flooding was 0.3 after polymer flooding and the recovery efficiency could also increase by 19.3%, and the effect of enhanced oil recovery was obvious during the binary combination flooding and polymer flooding; Saturation monitoring data showed that there formed oil wall and increased the flow resistance and expanded the swept volume during the stage of polymer flooding and binary combination flooding, effective use of low-permeability layer was the key to improve oil recovery.


2013 ◽  
Vol 368-370 ◽  
pp. 249-256
Author(s):  
Xian Jie Shao ◽  
Yuan Yuan Kang ◽  
Cai Feng Wang ◽  
Er Shuang Gao ◽  
Xin Hui Che ◽  
...  

In traditional views, oilfield is abandoned after water flooding and chemical flooding. But the recovery is only 50%~60%,that is to say, more than 40% of the resource is still left underground. Therefore, how to utilize this part of resource economically and effectively is a key problem to be tackled. Based on the lab experiments and theoretical researches on viscosity-temperature relationship, displacement and relative permeability under high temperature, the mechanism of enhancing oil recovery through steam flooding in super-high water cut stage of water injection oilfield was analyzed. The experimental results showed that steam flooding in 200°C after polymer flooding could increase oil displacement efficiency by 14.5%. Water flooding and polymer flooding had been implemented in Sabei development area of Daqing Oilfield since it was brought into development in 1963. The recovery had reached above 70% and the water cut had exceeded 98%. There was no economic benefit to develop continually, the oilfield faced abandonment. Steam flooding test was carried out to enhance oil recovery on this basis. According to the geological characteristics and development status, special technical measures were taken based on the lab experiments and numerical simulation including high-pressure steam injection to improve heat utilization, forced fluid withdrawal to increase production rate, insulated tubing and nitrogen insulation to keep the bottom hole steam dry, and tracking analysis to adjust injection-production parameters duly. The ultimate recovery reached 81.6% which increased 10.7% on the original basis, the field test was successful technically. Steam flooding is characterized with quick effect, high production rate and high producing degree of residual oil. This successful technology provides a direction for secondary development after polymer flooding in water flooding oilfield.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Jierui Li ◽  
Weidong Liu ◽  
Guangzhi Liao ◽  
Linghui Sun ◽  
Sunan Cong ◽  
...  

With a long sand-packed core with multiple sample points, a laboratory surfactant-polymer flooding experiment was performed to study the emulsification mechanism, chemical migration mechanism, and the chromatographic separation of surfactant-polymer flooding system. After water flooding, the surfactant-polymer flooding with an emulsified system enhances oil recovery by 17.88%. The water cut of produced fluid began to decrease at the injection of 0.4 pore volume (PV) surfactant-polymer slug and got the minimum at 1.2 PV. During the surfactant-polymer flooding process, the loss of polymer is smaller than that of surfactant, the dimensionless breakthrough time of polymer is 1.092 while that of surfactant is 1.308, and the dimensionless equal concentration distance of the chemical is 0.65. During surfactant-polymer flooding, the concentration of surfactant controls the formation of the emulsion. From 50 cm to 600 cm, as the migration distance increases, the concentration of surfactant decreases, and the emulsification strength and duration decrease gradually. With the formation of emulsion, the viscosity of the emulsion is relatively stable, which is beneficial to enhanced oil recovery. With the shear of reservoirs and migration of surfactant-polymer slug, the emulsion is formed to improve the swept volume and sweep efficiency and enhance oil recovery.


Processes ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 197 ◽  
Author(s):  
Ryan Santoso ◽  
Victor Torrealba ◽  
Hussein Hoteit

Polymer flooding is an effective enhanced oil recovery technology used to reduce the mobility ratio and improve sweep efficiency. A new polymer injection scheme is investigated that relies on the cyclical injection of low-salinity, low-concentration polymer slugs chased by high-salinity, high-concentration polymer slugs. The effectiveness of the process is a function of several reservoir and design parameters related to polymer type, concentration, salinity, and reservoir heterogeneity. We use reservoir simulations and design-of-experiments (DoE) to investigate the effectiveness of the proposed polymer injection scheme. We show how key objective functions, such as recovery factor and injectivity, are impacted by the reservoir and design parameters. In this study, simulations showed that the new slug-based process was always superior to the reference polymer injection scheme using the traditional continuous injection scheme. Our results show that the process is most effective when the polymer weight is high, corresponding to large inaccessible pore-volumes, which enhances polymer acceleration. High vertical heterogeneity typically reduces the process performance because of increased mixing in the reservoir. The significance of this process is that it allows for increased polymer solution viscosity in the reservoir without increasing the total mass of polymer, and without impairing polymer injectivity at the well.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3732 ◽  
Author(s):  
Yaohao Guo ◽  
Lei Zhang ◽  
Guangpu Zhu ◽  
Jun Yao ◽  
Hai Sun ◽  
...  

Water flooding is an economic method commonly used in secondary recovery, but a large quantity of crude oil is still trapped in reservoirs after water flooding. A deep understanding of the distribution of residual oil is essential for the subsequent development of water flooding. In this study, a pore-scale model is developed to study the formation process and distribution characteristics of residual oil. The Navier–Stokes equation coupled with a phase field method is employed to describe the flooding process and track the interface of fluids. The results show a significant difference in residual oil distribution at different wetting conditions. The difference is also reflected in the oil recovery and water cut curves. Much more oil is displaced in water-wet porous media than oil-wet porous media after water breakthrough. Furthermore, enhanced oil recovery (EOR) mechanisms of both surfactant and polymer flooding are studied, and the effect of operation times for different EOR methods are analyzed. The surfactant flooding not only improves oil displacement efficiency, but also increases microscale sweep efficiency by reducing the entry pressure of micropores. Polymer weakens the effect of capillary force by increasing the viscous force, which leads to an improvement in sweep efficiency. The injection time of the surfactant has an important impact on the field development due to the formation of predominant pathway, but the EOR effect of polymer flooding does not have a similar correlation with the operation times. Results from this study can provide theoretical guidance for the appropriate design of EOR methods such as the application of surfactant and polymer flooding.


Oil and gas companies are looking for proven hydrocarbon reserves from their mature drained reservoirs to extend the production and economic life of these fields. The chemical enhanced oil recovery (CEOR) is an attractive water-based EOR method for these mature fields. The polymer flooding (PF) is a widely applied process in reservoirs with low sweep efficiency after the water flooding (WF). The target Colombian field has one of the first polymer pilots in the region with positive results of oil recovery in “A” sands. Thus, the operator is interested in the expansion of PF for the same reservoir and even in deeper reservoir sands. This paper focuses in the evaluation of different scenarios of PF for the producer in layers A and B with a mechanistic simulation model, thus obtaining new recommendations for the recovery strategy in the field. A sector model was constructed from a full field model using a commercial reservoir simulator to the in-house chemical flooding reservoir simulator: UTCHEMRS. This sector model was also migrated to a second commercial simulator allowing a performance comparison for these three simulators. UTCHEMRS model results were compared with the commercial simulators through the history matching (HM) phase. The primary and waterflood history match was in agreement with the field data. Simulation results suggested that PF for the base case in “A” sands presented an incremental oil recovery of up to 12% additional to water flooding. Additionally, PF was extended to the lower layer “B” sand to investigate the potential of polymer injection. The PF injection in both reservoirs simultaneously loses sweep efficiency and decreases the oil recovery to about 3%. However, a hypothetical case of new infill producer wells with the objective of testing the individual reservoir performance has revealed that PF is having significant upside from B sands as well.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Huiying Zhong ◽  
Qiuyuan Zang ◽  
Hongjun Yin ◽  
Huifen Xia

With the growing demand for oil energy and a decrease in the recoverable reserves of conventional oil, the development of viscous oil, bitumen, and shale oil is playing an important role in the oil industry. Bohai Bay in China is an offshore oilfield that was developed through polymer flooding process. This study investigated the pore-scale displacement of medium viscosity oil by hydrophobically associating water-soluble polymers and purely viscous glycerin solutions. The role and contribution of elasticity on medium oil recovery were revealed and determined. Comparing the residual oil distribution after polymer flooding with that after glycerin flooding at a dead end, the results showed that the residual oil interface exhibited an asymmetrical “U” shape owing to the elasticity behavior of the polymer. This phenomenon revealed the key of elasticity enhancing oil recovery. Comparing the results of polymer flooding with that of glycerin flooding at different water flooding sweep efficiency levels, it was shown that the ratio of elastic contribution on the oil displacement efficiency increased as the water flooding sweep efficiency decreased. Additionally, the experiments on polymers, glycerin solutions, and brines displacement medium viscosity oil based on a constant pressure gradient at the core scale were carried out. The results indicated that the elasticity of the polymer can further reduce the saturation of medium viscosity oil with the same number of capillaries. In this study, the elasticity effect on the medium viscosity oil interface and the elasticity contribution on the medium viscosity oil were specified and clarified. The results of this study are promising with regard to the design and optimum polymers applied in an oilfield and to an improvement in the recovery of medium viscosity oil.


2018 ◽  
Vol 175 ◽  
pp. 01006
Author(s):  
Xu WenBo

For the main polymer flooding oilfield expansion and infill wells three times the area of deployment, the proposed development mode II oil reservoir of polymer flooding and thin and poor combination of three encryption. In this paper, the use of leading edge water monitoring methods and principles of the plane heterogeneity through physical simulation to study the effects of different mining methods II oil and a combination of the three encryption effects of flooding. Studies have shown that, together with the water flooding recovery can be increased by nearly 19 percent, higher than the water poly alternate drive about 4%, the injection pressure is about three types of reservoir 0.3MPa, flat stage water flood sweep efficiency compared with an average of 30.95%. Meanwhile polymer injection can increase oil recovery by 21%, but the limited ability of three types of oil injection, polymer injection pressure during injection 0.22PV up to 0.8MPa, water flooding stage by an average of 30 percent compared to the plane sweep efficiency. The water flooding recovery poly alternately raise only 15%, an average increase of 26.95 percent driven phase plane sweep efficiency than water. Theoretical results of this study may provide a reliable basis for the future development of efficient thin and poor reservoirs.


SPE Journal ◽  
2016 ◽  
Vol 21 (03) ◽  
pp. 0675-0687 ◽  
Author(s):  
A.. Clarke ◽  
A. M. Howe ◽  
J.. Mitchell ◽  
J.. Staniland ◽  
L. A. Hawkes

Summary Increasing flooding-solution viscosity with polymers provides a favorable mobility ratio compared with brine flooding and hence improves volumetric sweep efficiency. Flooding with a polymer solution exhibiting elastic properties has been reported to increase displacement efficiency, resulting in a sustained doubling of the recovery enhancement compared with the use of conventional viscous-polymer flooding (Wang et al. 2011). Flooding with viscoelastic-polymer solutions is claimed also to increase recovery more than expected from changes in capillary number alone (Wang et al. 2010). This increase in displacement efficiency by viscoelastic polymers is reported to occur because of changes in the steady-state-flow profile and enhancements in oil stripping and thread formation. However, within the industry there are doubts that a genuine effect is observed, or that improvements in displacement efficiency occur with field-applicable flow regimes (Vermolen et al. 2014). In this study, we demonstrate that flooding with viscoelastic-polymer solutions can indeed increase recovery more than expected from changes in capillary number. We show a mechanism of fluctuations in flow at low Reynolds number by which viscoelastic-polymer solutions provide improvements in displacement efficiency. The mechanism, known as elastic turbulence, is an effect previously unrecognized in this context. We demonstrate that the effect may be obtained at field-relevant flow rates. Furthermore, this underlying mechanism explains both the enhanced capillary-desaturation curves and the observation of apparent flow thickening (Delshad et al. 2008; Seright et al. 2011) for these viscoelastic solutions in porous media. The work contrasts experiments on flow and recovery by use of viscous and viscoelastic-polymer solutions. The circumstances under which viscoelasticity is beneficial are demonstrated. The findings are applicable to the design of formulations for enhanced oil recovery (EOR) by polymer flooding. A combination of coreflooding, micromodel flow, and rheometric studies is presented. The results include single-phase and multiphase floods in sandstone cores. Polymer solutions are viscoelastic [partially hydrolyzed polyacrylamide (HPAM)] or viscous (xanthan). The effects of molecular weight, flow rate, and concentration of the HPAMs are described. The data lead us to suggest a mechanism that may be used to explain the observations of improved displacement efficiency and why the improvement is not seen for all viscoelastic-polymer floods.


Sign in / Sign up

Export Citation Format

Share Document