scholarly journals Evaluation of Polymer Flooding in a Highly Stratified Heterogeneous Reservoir. A Field Case Study

Oil and gas companies are looking for proven hydrocarbon reserves from their mature drained reservoirs to extend the production and economic life of these fields. The chemical enhanced oil recovery (CEOR) is an attractive water-based EOR method for these mature fields. The polymer flooding (PF) is a widely applied process in reservoirs with low sweep efficiency after the water flooding (WF). The target Colombian field has one of the first polymer pilots in the region with positive results of oil recovery in “A” sands. Thus, the operator is interested in the expansion of PF for the same reservoir and even in deeper reservoir sands. This paper focuses in the evaluation of different scenarios of PF for the producer in layers A and B with a mechanistic simulation model, thus obtaining new recommendations for the recovery strategy in the field. A sector model was constructed from a full field model using a commercial reservoir simulator to the in-house chemical flooding reservoir simulator: UTCHEMRS. This sector model was also migrated to a second commercial simulator allowing a performance comparison for these three simulators. UTCHEMRS model results were compared with the commercial simulators through the history matching (HM) phase. The primary and waterflood history match was in agreement with the field data. Simulation results suggested that PF for the base case in “A” sands presented an incremental oil recovery of up to 12% additional to water flooding. Additionally, PF was extended to the lower layer “B” sand to investigate the potential of polymer injection. The PF injection in both reservoirs simultaneously loses sweep efficiency and decreases the oil recovery to about 3%. However, a hypothetical case of new infill producer wells with the objective of testing the individual reservoir performance has revealed that PF is having significant upside from B sands as well.

2013 ◽  
Vol 275-277 ◽  
pp. 496-501
Author(s):  
Fu Qing Yuan ◽  
Zhen Quan Li

According to the geological parameters of Shengli Oilfield, sweep efficiency of chemical flooding was analyzed according to injection volume, injection-production parameters of polymer flooding or surfactant-polymer compound flooding. The orthogonal design method was employed to select the important factors influencing on expanding sweep efficiency by chemical flooding. Numerical simulation method was utilized to analyze oil recovery and sweep efficiency of different flooding methods, such as water flooding, polymer flooding and surfactant-polymer compound flooding. Finally, two easy calculation models were established to calculate the expanding degree of sweep efficiency by polymer flooding or SP compound flooding than water flooding. The models were presented as the relationships between geological parameters, such as effective thickness, oil viscosity, porosity and permeability, and fluid parameters, such as polymer-solution viscosity and oil-water interfacial tension. The precision of the two models was high enough to predict sweep efficiency of polymer flooding or SP compound flooding.


2017 ◽  
Vol 10 (1) ◽  
pp. 94-107 ◽  
Author(s):  
Kaoping Song ◽  
Ning Sun ◽  
Yanfu Pi

Background: Polymer flooding is the most commonly applied chemical enhanced-oil-recovery technique in offshore oilfields. However, there are challenges and risks in applying the technology of polymer flooding to offshore heavy oil development. Objective: This paper compared the spread law and the displacement effect of different injection modes and validated the feasibility of enhancing oil recovery by variable concentrations polymer flooding. Method: Two types of laboratory experiments were designed by using micro etching glass models and heterogeneous artificial cores. Furthermore, in order to determine a better polymer flooding mode, the displacement results, displacement characteristic curves and oil saturation distribution of heterogeneous artificial cores were also compared, respectively. Results: The experimental results showed that the recovery of variable concentrations polymer flooding was higher than that of constant concentration polymer flooding, under conditions of same total amount of polymer and similar water flooding recovery. Its sweep efficiency and displacement efficiency were also significantly higher than those of constant concentration polymer flooding. Moreover, variable concentrations polymer flooding had lower peak pressure and was at lower risk for reaching the formation fracture pressure. Conclusion: As a consequence, variable concentrations polymer flooding has certain feasibility for heterogeneous reservoir in offshore oilfields, and can improve interlayer heterogeneity to further tapping remaining oil in medium and low permeability layer. Conclusions of this paper can provide reference for the field application of polymer flooding in offshore oilfields.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Jierui Li ◽  
Weidong Liu ◽  
Guangzhi Liao ◽  
Linghui Sun ◽  
Sunan Cong ◽  
...  

With a long sand-packed core with multiple sample points, a laboratory surfactant-polymer flooding experiment was performed to study the emulsification mechanism, chemical migration mechanism, and the chromatographic separation of surfactant-polymer flooding system. After water flooding, the surfactant-polymer flooding with an emulsified system enhances oil recovery by 17.88%. The water cut of produced fluid began to decrease at the injection of 0.4 pore volume (PV) surfactant-polymer slug and got the minimum at 1.2 PV. During the surfactant-polymer flooding process, the loss of polymer is smaller than that of surfactant, the dimensionless breakthrough time of polymer is 1.092 while that of surfactant is 1.308, and the dimensionless equal concentration distance of the chemical is 0.65. During surfactant-polymer flooding, the concentration of surfactant controls the formation of the emulsion. From 50 cm to 600 cm, as the migration distance increases, the concentration of surfactant decreases, and the emulsification strength and duration decrease gradually. With the formation of emulsion, the viscosity of the emulsion is relatively stable, which is beneficial to enhanced oil recovery. With the shear of reservoirs and migration of surfactant-polymer slug, the emulsion is formed to improve the swept volume and sweep efficiency and enhance oil recovery.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3732 ◽  
Author(s):  
Yaohao Guo ◽  
Lei Zhang ◽  
Guangpu Zhu ◽  
Jun Yao ◽  
Hai Sun ◽  
...  

Water flooding is an economic method commonly used in secondary recovery, but a large quantity of crude oil is still trapped in reservoirs after water flooding. A deep understanding of the distribution of residual oil is essential for the subsequent development of water flooding. In this study, a pore-scale model is developed to study the formation process and distribution characteristics of residual oil. The Navier–Stokes equation coupled with a phase field method is employed to describe the flooding process and track the interface of fluids. The results show a significant difference in residual oil distribution at different wetting conditions. The difference is also reflected in the oil recovery and water cut curves. Much more oil is displaced in water-wet porous media than oil-wet porous media after water breakthrough. Furthermore, enhanced oil recovery (EOR) mechanisms of both surfactant and polymer flooding are studied, and the effect of operation times for different EOR methods are analyzed. The surfactant flooding not only improves oil displacement efficiency, but also increases microscale sweep efficiency by reducing the entry pressure of micropores. Polymer weakens the effect of capillary force by increasing the viscous force, which leads to an improvement in sweep efficiency. The injection time of the surfactant has an important impact on the field development due to the formation of predominant pathway, but the EOR effect of polymer flooding does not have a similar correlation with the operation times. Results from this study can provide theoretical guidance for the appropriate design of EOR methods such as the application of surfactant and polymer flooding.


Author(s):  
Tomi Erfando ◽  
Novia Rita ◽  
Romal Ramadhan

As time goes by, there will be decreasing of production rates of a field along with decreasing pressure. This led to the necessity for further efforts to increase oil production. Therefore, pressure support is required to improve the recovery factor. Supportable pressure that can be used can be either water flooding and polymer flooding. This study aims to compare recovery factor to scenarios carried out, such as polymer flooding with different concentrations modeled in the same reservoir model to see the most favorable scenario. The method used in this research is reservoir simulation method with Computer Modeling Group (CMG) STARS simulator. The study was carried out by observing at the pressure, injection rate, and polymer concentration on increasing field recovery factor. This study used cartesian grid with the assumption of homogeneous reservoir, there are no faults or other geological condition in the reservoir, and driving mechanism is only solution gas drive. This reservoir, oil type is light oil with API gravity 40.3˚API and layer of conglomerate rock. The simulation result performed with various scenarios provides a good result. Where the conditions case base case field recovery factor of 6.7%, and after water flooding produced 25.5% of oil, whereas with tertiary recovery method is polymer flooding was carried out with four concentrations of 640 ppm, 1,500 ppm, 3,000 ppm, and 4,000 ppm obtained optimum values at 4,000 ppm polymer concentration with recovery factor 28.9%, SOR reduction final value 0,5255, polymer adsorption of 818,700 ppm, reservoir final pressure 1,707 psi, and an increase in water viscosity to 0.94 cP.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Huiying Zhong ◽  
Qiuyuan Zang ◽  
Hongjun Yin ◽  
Huifen Xia

With the growing demand for oil energy and a decrease in the recoverable reserves of conventional oil, the development of viscous oil, bitumen, and shale oil is playing an important role in the oil industry. Bohai Bay in China is an offshore oilfield that was developed through polymer flooding process. This study investigated the pore-scale displacement of medium viscosity oil by hydrophobically associating water-soluble polymers and purely viscous glycerin solutions. The role and contribution of elasticity on medium oil recovery were revealed and determined. Comparing the residual oil distribution after polymer flooding with that after glycerin flooding at a dead end, the results showed that the residual oil interface exhibited an asymmetrical “U” shape owing to the elasticity behavior of the polymer. This phenomenon revealed the key of elasticity enhancing oil recovery. Comparing the results of polymer flooding with that of glycerin flooding at different water flooding sweep efficiency levels, it was shown that the ratio of elastic contribution on the oil displacement efficiency increased as the water flooding sweep efficiency decreased. Additionally, the experiments on polymers, glycerin solutions, and brines displacement medium viscosity oil based on a constant pressure gradient at the core scale were carried out. The results indicated that the elasticity of the polymer can further reduce the saturation of medium viscosity oil with the same number of capillaries. In this study, the elasticity effect on the medium viscosity oil interface and the elasticity contribution on the medium viscosity oil were specified and clarified. The results of this study are promising with regard to the design and optimum polymers applied in an oilfield and to an improvement in the recovery of medium viscosity oil.


2018 ◽  
Vol 175 ◽  
pp. 01006
Author(s):  
Xu WenBo

For the main polymer flooding oilfield expansion and infill wells three times the area of deployment, the proposed development mode II oil reservoir of polymer flooding and thin and poor combination of three encryption. In this paper, the use of leading edge water monitoring methods and principles of the plane heterogeneity through physical simulation to study the effects of different mining methods II oil and a combination of the three encryption effects of flooding. Studies have shown that, together with the water flooding recovery can be increased by nearly 19 percent, higher than the water poly alternate drive about 4%, the injection pressure is about three types of reservoir 0.3MPa, flat stage water flood sweep efficiency compared with an average of 30.95%. Meanwhile polymer injection can increase oil recovery by 21%, but the limited ability of three types of oil injection, polymer injection pressure during injection 0.22PV up to 0.8MPa, water flooding stage by an average of 30 percent compared to the plane sweep efficiency. The water flooding recovery poly alternately raise only 15%, an average increase of 26.95 percent driven phase plane sweep efficiency than water. Theoretical results of this study may provide a reliable basis for the future development of efficient thin and poor reservoirs.


2018 ◽  
Vol 15 (30) ◽  
pp. 380-386
Author(s):  
Y. V. SAVINYKH ◽  
L. D. LANG

Polymer flooding is technologically simple and highly effective method of enhanced oil recovery. The method is based on adding a small amount of polymer in conventional water flooding of oil reservoirs. The increase in viscosity and the reduction of the mobility of injected water are to equalize the displacement front by slowing the moving of water in the highly permeable zones and restricting the formation of water finger. These factors help to increase the sweep efficiency and oil-water displacement efficiency during flooding. Polymer flooding has been used successfully in clastic and carbonate reservoirs, as well as in low-permeability reservoirs such as a fractured basement. However, most of the current polymer gel used for control water flows are decayed by a high content of ions Ca2+ and Mg2+ in formation water or in injected water. Similarly, polymer gels lose their stability at high reservoir temperature (above 70°C). Developing water-soluble polymer, which does not change their rheological properties under high salinity and high temperature (over 100°C), is very important when producing offshore, where sea water is commonly used for flooding (high salinity of 30-40 g/L).


2009 ◽  
Vol 49 (1) ◽  
pp. 453
Author(s):  
Pavel Bedrikovetsky ◽  
Mohammad Afiq ab Wahab ◽  
Gladys Chang ◽  
Antonio Luiz Serra de Souza ◽  
Claudio Alves Furtado

Injectivity formation damage with water-flooding using sea/produced water has been widely reported in the North Sea, the Gulf of Mexico and the Campos Basin in Brazil. The damage is due to the capture of solid/liquid particles by the rock with consequent permeability decline; it is also due to the formation of a low permeable external filter cake. Yet, moderate injectivity decline is not too damaging with long horizontal injectors where the initial injectivity is high. In this case, injection of raw or poorly treated water would save money on water treatment, which is not only cumbersome but also an expensive procedure in offshore projects. In this paper we investigate the effects of injected water quality on waterflooding using horizontal wells. It was found that induced injectivity damage results in increased sweep efficiency. The explanation of the phenomenon is as follows: injectivity rate is distributed along a horizontal well non-uniformly; water advances faster from higher rate intervals resulting in early breakthrough; the retained particles plug mostly the high permeability channels and homogenise the injectivity profile along the well. An analytical model for injectivity decline accounting for particle capture and a low permeable external filter cake formation has been implemented into the Eclipse 100 reservoir simulator. It is shown that sweep efficiency in a heterogeneous formation can increase by up to 5% after one pore volume injected, compared to clean water injection.


2021 ◽  
Author(s):  
Adekunle Tirimisiyu Adeniyi ◽  
Miracle Imwonsa Osatemple ◽  
Abdulwahab Giwa

Abstract There are a good numbers of brown hydrocarbon reservoirs, with a substantial amount of bypassed oil. These reservoirs are said to be brown, because a huge chunk of its recoverable oil have been produced. Since a significant number of prominent oil fields are matured and the number of new discoveries is declining, it is imperative to assess performances of waterflooding in such reservoirs; taking an undersaturated reservoir as a case study. It should be recalled that Waterflooding is widely accepted and used as a means of secondary oil recovery method, sometimes after depletion of primary energy sources. The effects of permeability distribution on flood performances is of concerns in this study. The presence of high permeability streaks could lead to an early water breakthrough at the producers, thus reducing the sweep efficiency in the field. A solution approach adopted in this study was reserve water injection. A reverse approach because, a producing well is converted to water injector while water injector well is converted to oil producing well. This optimization method was applied to a waterflood process carried out on a reservoir field developed by a two - spot recovery design in the Niger Delta area of Nigeria that is being used as a case study. Simulation runs were carried out with a commercial reservoir oil simulator. The result showed an increase in oil production with a significant reduction in water-cut. The Net Present Value, NPV, of the project was re-evaluated with present oil production. The results of the waterflood optimization revealed that an increase in the net present value of up to 20% and an increase in cumulative production of up to 27% from the base case was achieved. The cost of produced water treatment for re-injection and rated higher water pump had little impact on the overall project economy. Therefore, it can conclude that changes in well status in wells status in an heterogenous hydrocarbon reservoir will increase oil production.


Sign in / Sign up

Export Citation Format

Share Document