Experimental Testing and Finite Element Modeling of Bump Wafer Probing

2013 ◽  
Vol 284-287 ◽  
pp. 748-753
Author(s):  
Hao Yuan Chang ◽  
Kao Hua Chang ◽  
Yi Shao Lai

The purpose of this paper is mainly to develop a method to simulate the bump height variation and probe mark profile for Eutectic (Sn63/ Pb37) bump wafer probing with continuing-touchdown probing. Certainly, the bump height variation and probe mark area on the solder bump influence the quality of the wafer probing and further impacts reliability of the packaging process after wafer probing to cause issues of cold-joint and needle damage. A three-dimensional computational model of was developed to analyze the contact phenomena between the vertical needle and the solder bump. Finite element simulation software, ANSYS, is used to analyze the loading force distributed on the vertical needle with various overdrives. In addition, the results of the bump height variation and probe mark area, which predicted by the finite element method (FEM), were verified against the on-line experimental results. Finally, the results predicted by the finite element model is consistent with experimental results and the numerical method presented in the paper can be used as a useful evaluating method to support the choice of suitable probe geometry and wafer probe testing parameters.

2014 ◽  
Vol 607 ◽  
pp. 713-716
Author(s):  
Wen Liang Tang ◽  
Chun Yue Huang ◽  
Tian Ming Li ◽  
Ying Liang ◽  
Guo Ji Xiong ◽  
...  

In this paper, ANSYS-LSDYNA simulation software is used to build the three-dimensional finite element model of the ball bond and to get the Von Mises stress. The change of stress about the bump is researched which base on the model in different bonding pressure, bonding power and bonding time. The result show that: The stress increase with bonding pressure increase within a certain bonding pressure range, and then the stress will maintain a table number, however, the stress will continue to increase when the bonding pressure reach a certain value; increasing the bonding power, the area of lager stress will grow; prolonging the bonding time, the stress of the pad will increase with time, but when time increase to a certain value, the stress of the pad will not increase over time.


Author(s):  
Maria G Fernandes ◽  
Elza M Fonseca ◽  
Renato M Natal

The main goal of this paper is to assess the mechanical damage in solid rigid foam materials with similar mechanical properties to the human bone induced by the cutting parameters. In the present study, a three-dimensional dynamic finite element model was developed to simulate the drilling process in solid rigid foam materials and it was validated with experimental results. Using an explicit dynamic numerical simulation, it is possible to obtain large structural deformation with high load intensity in short time frame. The developed model is used to study the effects of different high intensity loads distribution in the solid rigid foam materials. Laboratory tests were produced using biomechanical test blocks instrumented with strain gauges in different surface positions during the drilling process. The comparison between the numerical and the experimental results enables the evaluation and improvements of the cutting process. It was concluded when the feed-rate is higher, the stresses and strains in the solid rigid foam material are lower. The developed numerical model proved to be a great tool in this kind of analysis and available to use in forthcoming tests.


2016 ◽  
Vol 35 (4) ◽  
pp. 312-325 ◽  
Author(s):  
A Nabhan ◽  
M Nouby ◽  
AM Sami ◽  
MO Mousa

The main objective of this paper is to determine the effect of outer race defect of deep groove ball bearings for (SKF 6004) through experimental and numerical methods. Three-dimensional finite element model of the housing and outer race is simulated using commercial package ABAQUS/CAE. Angular position of the local defect on the outer race which changes from 0° to 315° with angular intervals 45° is investigated through the dynamic finite element model. Experimental results are obtained using bearing test rig to validate the simulated results. A good agreement is found between the results obtained by the finite element model and the experimental results.


2018 ◽  
Vol 1 (1) ◽  
pp. 114-119
Author(s):  
Steven K. Latré ◽  
Ilya Straumit ◽  
Frederik Desplentere ◽  
Stepan V. Lomov

This paper proposes a method for the creation of a three-dimensional finite element model representing fiber reinforced insulation materials for the simulation software Siemens NX. VoxTex software, a tool for quantification of µCT images of fibrous materials, is used for the transformation of microtomography images of random fiber reinforced composites into finite element models. The paper describes the numerical tools used for the image quantification and the conversion and illustrates them on several thermal simulations of fiber reinforced insulation blankets filled with low thermal conductive fillers. The experimental measurements validate the prediction of the thermal conductivity.


2017 ◽  
Vol 19 (2) ◽  
pp. 106-114
Author(s):  
Mahmud Kori Effendi

The composite material concrete filled steel tubes, CFST) begin widely recommended in modern structural projects. This material is made of steel tubes filled with concrete. This CFST structure has better ductility than the conventional structure. The three-dimensional finite element modelby means of MSC Marc Mentat software is done by using non-linear material properties for both the steel and concrete. The non-linear geometry is also considered. The results of the finite element analysis method are then compared with experimental results of circular steel tubes filled with concrete. The results of this analysis for both load-deflection and collapse conditions are quite agree with the experimental results. However, the buckling phenomena cannot be modeled in the analysis of the finite element method. The effect of finite element model, which is half span and a quarter of half span, is investigated. The results of this analysis are similar to the results of full-scale analysis. There is plastic hinge in the middle of the beam span. The influence of the material properties of linear and non-linear geometric properties are also investigated. The the plastic hinge did not occur in the middle of beam span.


2013 ◽  
Vol 391 ◽  
pp. 14-17 ◽  
Author(s):  
Cheng Jun Yin ◽  
Qing Chun Zheng ◽  
Ya Hui Hu

In this paper, three-dimensional finite element model of titanium alloy TC4 was established by using three-dimensional finite simulation software-Deform.Change rule of cutting force and cutting temperature can be obtained in different cutting parameters including cutting speed, feed rate and cutting depth.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1152
Author(s):  
Rafał Nowak ◽  
Anna Olejnik ◽  
Hanna Gerber ◽  
Roman Frątczak ◽  
Ewa Zawiślak

The aim of this study was to compare the reduced stresses according to Huber’s hypothesis and the displacement pattern in the region of the facial skeleton using a tooth- or bone-borne appliance in surgically assisted rapid maxillary expansion (SARME). In the current literature, the lack of updated reports about biomechanical effects in bone-borne appliances used in SARME is noticeable. Finite element analysis (FEA) was used for this study. Six facial skeleton models were created, five with various variants of osteotomy and one without osteotomy. Two different appliances for maxillary expansion were used for each model. The three-dimensional (3D) model of the facial skeleton was created on the basis of spiral computed tomography (CT) scans of a 32-year-old patient with maxillary constriction. The finite element model was built using ANSYS 15.0 software, in which the computations were carried out. Stress distributions and displacement values along the 3D axes were found for each osteotomy variant with the expansion of the tooth- and the bone-borne devices at a level of 0.5 mm. The investigation showed that in the case of a full osteotomy of the maxilla, as described by Bell and Epker in 1976, the method of fixing the appliance for maxillary expansion had no impact on the distribution of the reduced stresses according to Huber’s hypothesis in the facial skeleton. In the case of the bone-borne appliance, the load on the teeth, which may lead to periodontal and orthodontic complications, was eliminated. In the case of a full osteotomy of the maxilla, displacements in the buccolingual direction for all the variables of the bone-borne appliance were slightly bigger than for the tooth-borne appliance.


Sign in / Sign up

Export Citation Format

Share Document