Three-dimensional dynamic finite element and experimental models for drilling processes

Author(s):  
Maria G Fernandes ◽  
Elza M Fonseca ◽  
Renato M Natal

The main goal of this paper is to assess the mechanical damage in solid rigid foam materials with similar mechanical properties to the human bone induced by the cutting parameters. In the present study, a three-dimensional dynamic finite element model was developed to simulate the drilling process in solid rigid foam materials and it was validated with experimental results. Using an explicit dynamic numerical simulation, it is possible to obtain large structural deformation with high load intensity in short time frame. The developed model is used to study the effects of different high intensity loads distribution in the solid rigid foam materials. Laboratory tests were produced using biomechanical test blocks instrumented with strain gauges in different surface positions during the drilling process. The comparison between the numerical and the experimental results enables the evaluation and improvements of the cutting process. It was concluded when the feed-rate is higher, the stresses and strains in the solid rigid foam material are lower. The developed numerical model proved to be a great tool in this kind of analysis and available to use in forthcoming tests.

Author(s):  
M Barink ◽  
A van Kampen ◽  
M de Waal Malefijt ◽  
N Verdonschot

For testing purposes of prostheses at a preclinical stage, it is very valuable to have a generic modelling tool, which can be used to optimize implant features and to avoid poor designs being launched on to the market. The modelling tool should be fast, efficient, and multipurpose in nature; a finite element model is well suited to the purpose. The question posed in this study was whether it was possible to develop a mathematically fast and stable dynamic finite element model of a knee joint after total knee arthroplasty that would predict data comparable with published data in terms of (a) laxities and ligament behaviour, and (b) joint kinematics. The soft tissue structures were modelled using a relatively simple, but very stable, composite model consisting of a band reinforced with fibres. Ligament recruitment and balancing was tested with laxity simulations. The tibial and patellar kinematics were simulated during flexion-extension. An implicit mathematical formulation was used. Joint kinematics, joint laxities, and ligament recruitment patterns were predicted realistically. The kinematics were very reproducible and stable during consecutive flexion-extension cycles. Hence, the model is suitable for the evaluation of prosthesis design, prosthesis alignment, ligament behaviour, and surgical parameters with respect to the biomechanical behaviour of the knee.


2013 ◽  
Vol 284-287 ◽  
pp. 748-753
Author(s):  
Hao Yuan Chang ◽  
Kao Hua Chang ◽  
Yi Shao Lai

The purpose of this paper is mainly to develop a method to simulate the bump height variation and probe mark profile for Eutectic (Sn63/ Pb37) bump wafer probing with continuing-touchdown probing. Certainly, the bump height variation and probe mark area on the solder bump influence the quality of the wafer probing and further impacts reliability of the packaging process after wafer probing to cause issues of cold-joint and needle damage. A three-dimensional computational model of was developed to analyze the contact phenomena between the vertical needle and the solder bump. Finite element simulation software, ANSYS, is used to analyze the loading force distributed on the vertical needle with various overdrives. In addition, the results of the bump height variation and probe mark area, which predicted by the finite element method (FEM), were verified against the on-line experimental results. Finally, the results predicted by the finite element model is consistent with experimental results and the numerical method presented in the paper can be used as a useful evaluating method to support the choice of suitable probe geometry and wafer probe testing parameters.


2016 ◽  
Vol 710 ◽  
pp. 396-401 ◽  
Author(s):  
Ze Chao Zhang ◽  
Hong Bo Liu ◽  
Xiao Dun Wang ◽  
Xiang Yu Yan ◽  
Jing Hai Yu ◽  
...  

The upper part of Caofeidian coal storage was approximately hemispherical aluminum shell, covered with aluminum alloys plate. The capsule was made of aluminum alloys material, and its span was 125 meters. In the design, according to TEMCOR joint, we used the finite element software MIDAS to build the accurate geometry models and calculation models of aluminum alloys single layer latticed dome structures. By the combination of constant loads, live loads, snow load, wind load, temperature effect and other working conditions, we summarized the consumption of aluminum of the structures, and studied the structural internal force, structural deformation and structural stiffness. In addition, the X and Y two different direction seismic dynamic load was applied to the structure. The structural seismic performance under two kinds of modes were studied through the structure mode analysis of the vibration frequency. The vierendeel dome and single layer dome were controlled by the stability. ANSYS three-dimensional frame element model were set up, and the eigenvalue buckling analysis was carried out. By the geometrical nonlinear finite element method, combining with initial imperfections and material nonlinear, we found out the stability coefficient and the weak parts of the structure.


2011 ◽  
Vol 704-705 ◽  
pp. 657-663 ◽  
Author(s):  
Hong Bing Wu ◽  
Zhi Xin Jia ◽  
Xue Chang Zhang ◽  
Gang Liu

To investigate the drilling process of titanium alloys, the three dimensional finite element model of two flutes twist drill was established. The drilling process of Ti6Al4V was simulated based on the presented model. In addition, the drilling experiments were carried out under the different spindle speed and feeding speed. The drilling forces of the experiment and simulation were achieved. The result of simulation agrees with the result of experiment well. It proves that the finite element model is correct. Simultaneously, the results show that more high drilling speed can improve the quality of hole in drilling process of Ti6Al4V obviously.


2011 ◽  
Vol 66-68 ◽  
pp. 390-395 ◽  
Author(s):  
Qing Ying Li ◽  
Tian Bai ◽  
Chun Ling Zhu

A two-dimensional electromagnetic eddy current field analysis model of the experimental electro-impulse deicing system (EIDI) is developed. Additionally, a numerical post-processing method is proposed to calculate the deicing excitation exerting on the testing skin. Moreover, a three-dimensional dynamic analysis finite element model of the testing skin loaded the excitation is built for evaluating the response accelerations. Then, the calculated accelerations are compared with the experimental measured data to validate the correctness of the proposed methods. It is obtained that the results agree well, which indicates that it is feasible to use the method of post-processing pressure distribution for solving the deicing excitation and the method of structural dynamic finite element analyzing the testing skin for simulating dynamic response. The presented methods pave a way for ice failure analysis of the EIDI system.


Author(s):  
Oleksiy Domin ◽  
Oleksiy Larin

This article deals with the problems of designing and analysis of the deformed state of the wind turbine blade under critical loads. A three-dimensional shell simulation model is built, taking into account the complex curvilinear geometry and the presence of reinforcing internal parts. The determination of the parameters of the stress-strain state under the influence of wind load was carried out on the basis of the finite element method. A shell ten-node isoparametric finite element was used. The constructed finite element model of the blade allows taking into account the composite structure and reproduced the presence of a different number of composite layers along the thickness of the shell, the diversity of fibers on individual layers, in particular, the curvilinear orthotropy of mechanical properties was modeled. The procedure of multi-layer structure setting is presented, which provides for superimposition of layers of composite one on the other in places of joint, which ensures compliance of model with technological peculiarities. Static analysis of structural deformation calculation is carried out taking into account lifting force and air head force. The strength analysis was performed for each of the layers according to the criterion of maximum deformations. Key words: composite material, wind turbine blade, strength, finite-elemental analysis, orthotropy of characteristics.


Author(s):  
Mehmet Burak Bilgin ◽  
Kadir Gök ◽  
Arif Gök

Friction drilling processes are used commonly in hot forming operations. This process is similar to drilling processes but without using chip. This process is used especially for joining thin-walled metal components. In this study, the drilling process using centerdrill is investigated both experimentally and numerically. The finite element analyses (FEA) were conducted using deform-3D software based on finite element method (FEM). In this study, an analytic model is developed, which calculate the process parameters as torque and axial power, heat transfer coefficient. A comparison was also made for temperature, torque and axial force obtained from experimental and numerical analyses. At the end of the study, while the torque and axial force values decrease with increasing of spindle speed, temperature values of centerdrill and workpiece increase with increasing of spindle speed. A good consistency between both experimental and FEA simulations was found during the centerdrill process.


Author(s):  
Rihem Amri ◽  
Adnen Laamouri ◽  
Sondes Manchoul ◽  
Raouf Fathallah

This paper aims to develop and validate the transient dynamic finite element three-dimensional simulation of a waterjet peening process to predict surface properties (residual stresses, plastic strains, surface roughness, and superficial damage). The finite-element model considers an impingement of multisets of droplets, which strike the treated surface by impact pressures over the corresponding contact regions at high velocities. The impact pressures and their durations are modelled by using the liquid impact theory combined with an impact velocity law depending on the main parameters of the process. The behavior law of the material is an elastoviscoplastic law coupled to the Johnson–Cook damage criterion. The effectiveness of this simulation is discussed in two cases: (i) a linear mono-set of droplets and (ii) multisets of droplets using the experimental results of a waterjet-peened Al7075-T6 aluminum alloy. The predictive results of surface properties obtained by simulation with multi-sets of droplets appear more realistic than those obtained by simulation with a single set of droplets and more close to the experimental surface properties.


Sign in / Sign up

Export Citation Format

Share Document