Vehicles Aerodynamics while Crossing each other on Road Based on Computational Fluid Dynamics

2010 ◽  
Vol 29-32 ◽  
pp. 1344-1349 ◽  
Author(s):  
Zhe Zhang ◽  
Ying Chao Zhang ◽  
Jie Li

When vehicles run on road, they will be overtaken, cross by other vehicles or be impacted by crosswind. The other events of overtaking and in crosswind were investigated more deeply. A few of paper report the state of the research on this problem. Until now there are no any wind tunnel and road tests to study on road vehicle aerodynamics while crossing each other. Some numerical simulations were carried out by adopting technology of sliding interface and moving mesh. The method of numerical simulations was narrated in detail. The transient process of vehicles crossing each other was realized. Then the trends of aerodynamic coefficients changing were obtained from the flow field of simulation results. The quantificational changing of vehicles aerodynamic coefficients was obtained when they cross each other. The vehicles are sedan and coach. The simulation results indicated that the all aerodynamic coefficients of two vehicles changed large. The aerodynamic force was important to the vehicles’ handling stability when they cross each other.

2013 ◽  
Vol 662 ◽  
pp. 586-590
Author(s):  
Gang Lu ◽  
Qing Song Yan ◽  
Bai Ping Lu ◽  
Shuai Xu ◽  
Kang Li

Four types of Super Typhoon drip emitter with trapezoidal channel were selected out for the investigation of the flow field of the channel, and the CFD (Computational Fluid Dynamics) method was applied to simulate the micro-field inside the channel. The simulation results showed that the emitter discharge of different turbulent model is 4%-14% bigger than that of the experimental results, the average discharge deviation of κ-ω and RSM model is 5, 4.5 respectively, but the solving efficiency of the κ-ω model is obviously higher than that of the RSM model.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Ling Zhou ◽  
Lingjie Zhang ◽  
Weidong Shi ◽  
Ramesh Agarwal ◽  
Wei Li

A coupled computational fluid dynamics (CFD)/discrete element method (DEM) is used to simulate the gas–solid two-phase flow in a laboratory-scale spouted fluidized bed. Transient experimental results in the spouted fluidized bed are obtained in a special test rig using the high-speed imaging technique. The computational domain of the quasi-three-dimensional (3D) spouted fluidized bed is simulated using the commercial CFD flow solver ANSYS-fluent. Hydrodynamic flow field is computed by solving the incompressible continuity and Navier–Stokes equations, while the motion of the solid particles is modeled by the Newtonian equations of motion. Thus, an Eulerian–Lagrangian approach is used to couple the hydrodynamics with the particle dynamics. The bed height, bubble shape, and static pressure are compared between the simulation and the experiment. At the initial stage of fluidization, the simulation results are in a very good agreement with the experimental results; the bed height and the bubble shape are almost identical. However, the bubble diameter and the height of the bed are slightly smaller than in the experimental measurements near the stage of bubble breakup. The simulation results with their experimental validation demonstrate that the CFD/DEM coupled method can be successfully used to simulate the transient gas–solid flow behavior in a fluidized bed which is not possible to simulate accurately using the granular approach of purely Euler simulation. This work should help in gaining deeper insight into the spouted fluidized bed behavior to determine best practices for further modeling and design of the industrial scale fluidized beds.


2006 ◽  
Vol 129 (1) ◽  
pp. 252-260 ◽  
Author(s):  
Song-Charng Kong ◽  
Hoojoong Kim ◽  
Rolf D. Reitz ◽  
Yongmo Kim

Diesel engine simulation results using two different combustion models are presented in this study, namely the representative interactive flamelet (RIF) model and the direct integration of computational fluid dynamics and CHEMKIN. Both models have been implemented into an improved version of the KIVA code. The KIVA/RIF model uses a single flamelet approach and also considers the effects of vaporization on turbulence-chemistry interactions. The KIVA/CHEMKIN model uses a direct integration approach that solves for the chemical reactions in each computational cell. The above two models are applied to simulate combustion and emissions in diesel engines with comparable results. Detailed comparisons of predicted heat release data and in-cylinder flows also indicate that both models predict very similar combustion characteristics. This is likely due to the fact that after ignition, combustion rates are mixing controlled rather than chemistry controlled under the diesel conditions studied.


CFD letters ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 15-26
Author(s):  
Adnan Ghulam Mustafa ◽  
Mohd Fadhil Majnis ◽  
Nor Azyati Abdul Muttalib

Mixing of fluid can happen in existence or absence of impeller which will affect the mixing performance. The hydrodynamics behavior of fluid has a strong effect on the mixing. The design of mixing systems and operation using the agitated tanks is complicated because it is difficult to obtain accurate information for turbulence’s impeller induced. Computational Fluid Dynamics can be used to provide a detailed comprehension of those systems. This paper describes the effect of various designs of impeller in miniature stirred tank reactor towards the mixing of the calcium alginate beads with the milk using Computational Fluid Dynamics (CFD) software, ANSYS Fluent 19.2. The four different type of impellers are edge beater, 5-turbine blade, t-shape, and paddle. The impeller was simulated at different speeds of 150 rpm, 250 rpm, and 300 rpm. K-epsilon turbulence model was employed to simulate the flow distribution pattern of calcium alginate beads and the Multiple Reference Frame approach was used for the impeller rotation’s simulation. The simulation results obtained have a good agreement with the experimental results in term of vortex formation. The simulation results obtained for contour plots were fitted well with the experimental results as well as with pattern of impeller flow which was also studied. As a result, an optimal design of the impeller that is able to produce good mixing can be achieved using CFD analysis. The results obtained after performing the simulation proved that edge beater blade outperformed the other impellers and took the least time to fully distribute the calcium alginate beads in the tank at 250 rpm compared to 150 and 300 rpm. It can also be concluded that the edge beater blade is the best for the mixing of two-phase fluid and also produces mixed pattern flow. The obtained results from CFD can also be used to scale up the mixing process in larger systems.


2018 ◽  
Vol 204 ◽  
pp. 06001
Author(s):  
Syamsuri ◽  
M Hasan Syafik ◽  
Yudho Putro Iswanto

At a cyclist drag racing champions greatly affect the speed of the bike, especially on the use of racing bike helmets. If the aerodynamic force from the racing bike helmet is getting smaller than the use of helmets on the bike racing will be more optimal and will affect the rate of the racer. In this study, numerical simulations were used to investigate the magnitude of the drag force that occurs around the surface of the helmet. With CFD software, 4 variations of attack angle 0°, 10°, 20° and 30° and variations of Reynold number 7.14x104, 1.00x105, and 1.16x105 are simulated to determine the flow characteristics of each state. The simulation results show that large area vortex is formed at the bottom of the helmet curve and dominates at the attack angle 30°. The result of the drag coefficient generated at the angle of attack 0° to 20° tends to decrease but at the attack angle 200 and 30° the drag coefficient increases.


Author(s):  
Han Li ◽  
Huhu Wang ◽  
Yassin A. Hassan ◽  
N. K. Anand

Two or multiple parallel jets are an important shear flow that widely existing in many industrial applications. The interaction between turbulence jets enables fast and thorough mixing of two fluids. The mixing feature of parallel jets has many engineering applications, such as, in Generation IV conceptual nuclear reactors, the coolants merge in upper or lower plenum after passing through the reactor core. While study of parallel jets mixing phenomenon, numerical experiments such as Computational Fluid Dynamics (CFD) simulations are extensively incorporated. Validation of varied turbulent models is of importance to make sure that the numerical results could be trusted and served as a guideline further design purpose. Many commercial CFD packages in the market such as FLUENT and Star CCM+ can provide the ability to simulate turbulent flow with predefined turbulence model, however, such commercial solvers may lack the flexibility that allow users build their own models for R&D purpose. The existing solvers in OpenFOAM are developed to fulfill both academic and industrial needs by achieving large-scale computational capability with a variety of physical models. Moreover, as an open source CFD toolbox, OpenFOAM grants users full control of the source code with complete freedom of customization. The purpose of this study is to perform CFD simulation using OpenFOAM for two submerged parallel jets issuing from two rectangular channels. Fully hexahedron multi-density mesh is generated using blockMesh utility to ensure velocity gradients are properly evaluated. A generalized-multi-grid solver is used to enhance convergence. Based on Reynolds-Averaged Navier-Stokes Equations (RANS), the realizable k-ε and k-ε shear stress transport (SST) are selected to model turbulent flow. Steady state Finite Volume solver simpleFoam is used to perform the simulation. In addition, data from experiments run in Thermal-Hydraulic Lab at Texas A&M University using particle image velocity (PIV) and Laser Doppler Anemometry (LDA) methods are considered in order to compare and validate simulation results. A number of turbulence characteristic such as mean velocities, turbulent intensities, z-component vorticity were compared with experiments. It was found that for stream-wise mean velocity profile as well as shear stresses, the realizable k-ε model exhibits a good agreement with experimental data. However, velocity fluctuation and turbulence intensities, simulation results showed a certain discrepancy.


Author(s):  
Terry Potter ◽  
Tathagata Acharya

Abstract Multiphase separators on production platforms are among the first equipment through which well fluids flow. Based on functionality, multiphase separators can either be two-phase that separate oil from water, or three-phase that separate oil, natural gas, and water. Separator performances are often evaluated using mean residence time (MRT) of the hydrocarbon phase. MRT is defined as the amount of time a given phase stays inside the separator. On field, operators usually measure MRT as the ratio of active volume occupied by each phase to the phase volumetric flowrate. However, this method may involve significant errors as the oil-water interface height is obtained using level controllers and the volume occupied by each phase is calculated assuming the interface can be extrapolated from the weir back to the separator inlet. In this study, authors perform computational fluid dynamics (CFD) on a two-phase horizontal separator to evaluate MRT as a function of varying water volume flowrates (water-cut) in a mixture of water and oil. The authors use residence time distributions (RTD) to obtain MRT at each water-cut — a method that results in significantly more accurate results than the regular method used by operators. The numerical model is developed with commercial software package ANSYS Fluent. The code uses the Eulerian multiphase model along with the k-ε turbulence model. The simulation results show agreement with experiments performed by previous researchers. Additional simulations are performed to assess the effect of various separator internals on separator performance. Simulation results suggest that the model developed in this study can be used to predict performances of two-phase liquid-liquid separators with reasonable accuracy and will be useful towards their design to improve performances under various inlet flow conditions.


Sign in / Sign up

Export Citation Format

Share Document