Hydrogeochemical Mechanism of the Petroleum Hydrocarbon Pollution in Karst Fissure Groundwater System

2013 ◽  
Vol 295-298 ◽  
pp. 159-163 ◽  
Author(s):  
Zhen Min Ma ◽  
Yun Yun Luo ◽  
Yun Zhi Fang ◽  
Yu Song Hou

The research of hydrogeochemical mechanism of petroleum hydrocarbon in karst fissure groundwater system is important to predict the trend of petroleum hydrocarbons and the change of groundwater environment. We take the karst fissure water system as the research object, where there is a refinery. The variation of SO42-, HCO3-, NO3-, NO2-, HS- can be used as a hydrogeochemical sign of petroleum hydrocarbon pollution by analyzing the change of water quality parameters before and after karst fissure water contaminated by petroleum hydrocarbon. It has been also analyzed systematically that hydrogeochemical mechanism including desulfurization, denigration and ion exchange happen during the pollution process in the karst fissure water system. It is pointed out that the human activities have a great impact on the groundwater and changes of environment.

2021 ◽  
Vol 9 (5) ◽  
pp. 474
Author(s):  
René Rodríguez-Grimón ◽  
Nestor Hernando Campos ◽  
Ítalo Braga Castro

Since 2013, there has been an increase (>23%) in naval traffic using maritime routes and ports on the coastal fringe of Santa Marta, Colombia. Of major concern, and described by several studies, is the relationship between maritime traffic and coastal contamination. This study proposed a maritime traffic indicator considering the simultaneous effects of several relevant measurements of water quality parameters to estimate the impact of naval activity. The approach involved developing a model including the number of vessels, hull length, and permanence time in berths. In addition, water quality variables, considering climatic seasons, were used to verify association with maritime traffic and touristic activities. The high concentrations of total coliforms (TC) and dissolved/dispersed petroleum hydrocarbons in chrysene equivalents (DDPH) reported by the International Marina of Santa Marta (SM) were affected by the local anthropic activities, including tourism, naval traffic, and urban wastewater discharges. Moreover, our results suggest the occurrence of multiple chemical impacts within Tayrona National Natural Park (PNNT) affecting conservation goals. The estimation of the maritime traffic indicator proposed in this study may be an easy and more complete tool for future studies evaluating the impact of naval activities on environmental quality.


2017 ◽  
Vol 65 (3) ◽  
pp. 495-508
Author(s):  
William Bauer ◽  
Paulo Cesar Abreu ◽  
Luis Henrique Poersch

Abstract Water quality, chlorophyll a, phytoplankton, proto and mezo-zooplankton abundance were spatiotemporally evaluated in an estuary receiving effluents from a Pacific white shrimp Litopenaeus vannamei farm in Patos Lagoon estuary, Southern Brazil. Samples were taken before (BD) and; 1 day (1 PD) 5 days (5 PD), 10 days (10 PD), 20 days (20 PD) and 30 days (30 PD) after the effluents discharge. Some water quality parameters were affected by the effluents discharge; however, these changes were restricted to a distance of 20 m from the effluent discharge channel for a period of 5 days. The microbial community was dominated by chlorophyceae, followed by diatoms, cyanobacteria and ciliates. There was an increase in the abundance of different groups on the 1 PD sampling compared to BD. The zooplankton abundance was low in practically all sites, except for 30 PD sampling. The meso-zooplanktonic organisms were represented by copepods, mostly Acartia tonsa. Despite some effects on water quality and phytoplankton and protozooplankton abundance until 5 PD sampling, these alterations dissipated in a short period of time. We conclude that the environment quickly assimilated the effluents discharge, and the water quality parameters remained within the limits stipulated by standard guidelines.


Pathogens ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 567 ◽  
Author(s):  
Helen Y. Buse ◽  
Brian J. Morris ◽  
Vicente Gomez-Alvarez ◽  
Jeffrey G. Szabo ◽  
John S. Hall

Understanding Legionella survival mechanisms within building water systems (BWSs) is challenging due to varying engineering, operational, and water quality characteristics unique to each system. This study aimed to evaluate Legionella, mycobacteria, and free-living amoebae occurrence within a BWS over 18–28 months at six locations differing in plumbing material and potable water age, quality, and usage. A total of 114 bulk water and 57 biofilm samples were analyzed. Legionella culturability fluctuated seasonally with most culture-positive samples being collected during the winter compared to the spring, summer, and fall months. Positive and negative correlations between Legionella and L. pneumophila occurrence and other physiochemical and microbial water quality parameters varied between location and sample types. Whole genome sequencing of 19 presumptive Legionella isolates, from four locations across three time points, identified nine isolates as L. pneumophila serogroup (sg) 1 sequence-type (ST) 1; three as L. pneumophila sg5 ST1950 and ST2037; six as L. feeleii; and one as Ochrobactrum. Results showed the presence of a diverse Legionella population with consistent and sporadic occurrence at four and two locations, respectively. Viewed collectively with similar studies, this information will enable a better understanding of the engineering, operational, and water quality parameters supporting Legionella growth within BWSs.


2014 ◽  
Vol 70 (8) ◽  
pp. 1341-1347 ◽  
Author(s):  
V. C. Andrés-Valeri ◽  
D. Castro-Fresno ◽  
L. A. Sañudo-Fontaneda ◽  
J. Rodriguez-Hernandez

Three different drainage systems were built in a roadside car park located on the outskirts of Oviedo (Spain): two sustainable urban drainage systems (SUDS), a swale and a filter drain; and one conventional drainage system, a concrete ditch, which is representative of the most frequently used roadside drainage system in Spain. The concentrations of pollutants were analyzed in the outflow of all three systems in order to compare their capacity to improve water quality. Physicochemical water quality parameters such as dissolved oxygen, total suspended solids, pH, electrical conductivity, turbidity and total petroleum hydrocarbons were monitored and analyzed for 25 months. Results are presented in detail showing significantly smaller amounts of outflow pollutants in SUDS than in conventional drainage systems, especially in the filter drain which provided the best performance.


2009 ◽  
Vol 44 (4) ◽  
pp. 355-363 ◽  
Author(s):  
Chia-Wei Lin ◽  
Mei-Hui Li

Abstract One closed uncontrolled landfill, the Neihu garbage dump, and one active controlled landfill, the Sanzhuku sanitary landfill, were selected for investigation of their leachate characteristics and effects on adjacent river water quality before and after rainfall in northern Taiwan. A total of seven samplings were made during February and June 2007, with four samplings done after individual rainfall events on study sites. Water quality of runoff samples collected from the Sanzhuku sanitary landfill showed less pollution than the water quality of leachates collected from the Neihu garbage dump; however, some water quality levels of leachate samples collected from the Neihu garbage dump were relatively high, such as ammonia nitrogen (NH3-N), orthophosphate (PO43-) and biochemical oxygen demand (BOD5). At the uncontrolled dump, rainfall lead to dilution effects on river water NH3-N and PO43- concentrations, but not other water quality parameters. In contrast, the concentrations of bisphenol A (BPA) and nonylphenol were increased in both types of landfills after rainfall in the present study. Dilution effects of rainfall on most water quality parameters and toxicity tests were observed in the Neihu garbage dump leachates after rainfall, but not for the Sanzhuku Landfill runoff. The highest concentration of BPA measured in this study was 25.8 μg L-1 in the Sanzhuku sanitary landfill runoff after the heaviest rainfall event, during which 236 mm of rainfall accumulated over four days. The results of this study suggest that both uncontrolled and controlled landfill leachates can be an important potential pollution source of BPA to adjacent water bodies.


Abstract.—A water filtration and ozonation system was recently installed to treat creek water used to culture species of concern at the U.S. Fish and Wildlife Service’s Northeast Fishery Center, Lamar National Fish Hatchery (NFH). Past experience with fish culture indicates that the following bacterial pathogens are endemic to the creek water supply: <em>Aeromonas salmonicida</em>, <em>Yersinia ruckeri</em>, <em>Flavobacterium columnaris</em>, and <em>Flavobacterium psychrophilia</em>. Water samples were collected from sites located before and after filtration and ozonation and examined for culturable bacteria. Variable operation of the filtration/ozonation system was used to examine (1) the effect of microscreen filtration (i.e., using drum filters containing 37-μm sieve panels) on ozone inactivation of bacterial microorganisms, (2) the effect of dissolved ozone contact times on inactivation of bacterial microorganisms, and (3) the effect of water quality fluctuations on the dissolved ozone demand measured during the course of these tests. Inactivation exceeded 98% for all bacteria when ozone <em>C*t </em>values were about 1.0 and reached 100% at 21.3, regardless of water quality parameters or implementation of microscreen filtration. These results indicate that the use of ozonation to treat surface water supplies used for fish culture facilities will effectively inactivate the majority of bacteria entering the system and will likely serve to prevent introduction of bacteria that can be pathogenic to fish.


2008 ◽  
Vol 5 (4) ◽  
pp. 696-705 ◽  
Author(s):  
A. Geetha ◽  
P. N. Palanisamy ◽  
P. Sivakumar ◽  
P. Ganesh Kumar ◽  
M. Sujatha

A systematic study has been carried out to assess the underground water contamination and the effect of textile effluents on Noyyal River basin in and around Tiruppur Town. Twenty six sampling locations were selected at random and the ground water samples were collected mostly from tube wells at Noyyal River basin in and around Tiruppur area. The samples were analyzed for major physical and chemical water quality parameters like pH, alkalinity, electrical conductivity (EC), total dissolved solids (TDS), total hardness (TH), Ca, Mg, Na, K, Cl & SO42-. It was found that the underground water quality was contaminated at few sampling sites due to the industrial discharge of the effluents on to the river or land from the Tiruppur town. The sampling sites namely Orathupalayam, Karuvapalayam, Kulathupalayam, Uttukuli and Kodumanalpudur showed high deviations in total alkalinity, total hardness, Ca, Mg and chloride concentrations. Hence our study concludes that the underground water quality study in this region shows a constant variation in different parameters in different periods (before and after monsoon). So it is highly important to take periodical monitoring of the underground water quality in this region for our future sustainability


2017 ◽  
Vol 5 (3) ◽  
Author(s):  
Jefrikardus E. E. Ngatung ◽  
Henneke Pangkey ◽  
Jeffrie F. Mokolensang

The field work training of silk worm culture was done in one month at Balai Perikanan Budidaya Air Tawar Tatelu (BPBAT), Province of North Sulawesi, from May to June, 2016.  The media used are poultry dung (chicken manure) and EM4 with a flowing water system and fed with additional tofu waste.  The initial spread of silk worm seeds was 75 g / m2, and the results obtained were silk worm biomass of 150 g / m2, with the measurement of water quality parameters for DO, temperature and pH are respectively 1.61 ppm, 24.4-27.7° C and 6.1-7.3.Keywords:  aquaculture, life feed, silk worm, Tubifex sp., water quality


2020 ◽  
Vol 12 (20) ◽  
pp. 8730
Author(s):  
Sébastien M. R. Dente ◽  
Toshiyuki Shimizu ◽  
Tao Wang ◽  
Seiji Hashimoto

The current organization of water supply systems demands drinking standards for all the households’ usage of water. Few dual water systems, i.e., systems in which the quality of the water supplied is differentiated by types of use, exist but are mainly circumscribed to developing countries. Besides, bath and showers are so far considered as a potable use of water despite only drinking and cooking activities requiring the high-quality standards of potable water. The present work demonstrates how the principles of dual water systems can be incorporated into the sustainable concept of product-service system (PSS) using a dual water system of a municipal water supply treatment plant in France as a case study. The PSS is based on the water quality, and the bathing activity of households is considered with a dedicated standard for the first time. Two systems are considered, S1 and S2, supplied with the same raw water quality and treated with drinking (S1) bathing standards (S2). The quality parameters considered are total organic carbon (TOC) and turbidity (T) and the potential savings related to costs, material, and energy consumptions are assessed using EVALEAU as a process modeling tool. The treatment lines consisted of powdered activated carbon (PAC) addition, coagulation, flocculation, settling, and rapid sand filtration. Results show that material consumption can be reduced by 41% mainly through the decrease in chemical consumption associated with the change of requirement for the TOC parameter. On the opposite, energy consumption was found dependent on the water of volume treated rather than its quality leading to only marginal savings. The cost was decreased by 37% as a result of the reduction of the chemicals consumed.


Sign in / Sign up

Export Citation Format

Share Document