Turbulence Kinetic Energy Performance on Wind Turbine Blade Using CFD

2013 ◽  
Vol 315 ◽  
pp. 523-526 ◽  
Author(s):  
Azmahani Sadikin ◽  
M.R. Shamsudin ◽  
A. Wahab

Wind represents the kinetic energy of the atmosphere. Wind energy is currently supplying as much as 1% of the world electricity used, and could supply as much as 20% of global electricity in power and can be created through the use of wind turbines. Wind turbine blade is the most promising technology for the production of energy by using wind energy. Good design of wind turbine blade depends on performance of increasing to generate electricity which related with drag coefficient , lift coefficient and turbulence kinetic energy. However, the efficiency of wind turbine blade could be predicted by simulation due to flow streamline on wind turbine blade. This paper discuss the result obtain from simulation in CFD using CFX on NACA 4412 and NACA 4415.

Author(s):  
Sri Utami Handayani

Indonesia, with the longest coastline in the world, has enormous potential to develop large-scale wind energy. In wind turbines, the formation of a wake behind the wind turbine can reduce efficiency. It is estimated that the formation of a vortex tip behind the wind turbine blade can be reduced by adding a winglet. The main function of winglets attached to the blade is to reduce the effect of the wingtip vortices which are generated due to 3D spanwise flow that occurs because of the pressure non- equalization between the upper and lower blade surfaces. This paper aims to summarize the results of research on the effect of adding winglets to wind turbines.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3330 ◽  
Author(s):  
Jianhua Xu ◽  
Zhonghua Han ◽  
Xiaochao Yan ◽  
Wenping Song

A new airfoil family, called NPU-MWA (Northwestern Polytechnical University Multi-megawatt Wind-turbine A-series) airfoils, was designed to improve both aerodynamic and structural performance, with the outboard airfoils being designed at high design lift coefficient and high Reynolds number, and the inboard airfoils being designed as flat-back airfoils. This article aims to design a multi-megawatt wind turbine blade in order to demonstrate the advantages of the NPU-MWA airfoils in improving wind energy capturing and structural weight reduction. The distributions of chord length and twist angle for a 5 MW wind turbine blade are optimized by a Kriging surrogate model-based optimizer, with aerodynamic performance being evaluated by blade element-momentum theory. The Reynolds-averaged Navier–Stokes equations solver was used to validate the improvement in aerodynamic performance. Results show that compared with an existing NREL (National Renewable Energy Laboratory) 5 MW blade, the maximum power coefficient of the optimized NPU 5 MW blade is larger, and the chord lengths at all span-wise sections are dramatically smaller, resulting in a significant structural weight reduction (9%). It is shown that the NPU-MWA airfoils feature excellent aerodynamic and structural performance for the design of multi-megawatt wind turbine blades.


Author(s):  
R. S. Amano ◽  
Ryan J. Malloy

Recently there has been an increase in the demand for the utilization of clean renewable energy sources. This is a direct result of a rise in oil prices and an increased awareness of human induced climate change. Wind energy has been shown to be one of the most promising sources of renewable energy. With current technology, the low cost of wind energy is competitive with more conventional sources of energy such as coal. This however is only true in areas of high wind density. These areas are not as abundant and therefore the number of profitable sites is limited. This paper explores the possibility increasing the number of profitable sites by optimizing wind turbine blade design for low wind speed areas. The two methods of optimization that are investigated are first, optimizing the angle of attack and chord length for a given airfoil cross section at different positions along the blade and second implementing a swept blade profile. The torque generated from a blade using only the first optimization technique is compared to that generated from a blade using both techniques as well as that generated by NTK500/41 turbine using LM19.1 blades. Performance will be investigated using the CFD solver FLUENT.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Weijun Tian ◽  
Zhen Yang ◽  
Qi Zhang ◽  
Jiyue Wang ◽  
Ming Li ◽  
...  

The main purpose of this paper is to demonstrate a bionic design for the airfoil of wind turbines inspired by the morphology of Long-eared Owl’s wings. Glauert Model was adopted to design the standard blade and the bionic blade, respectively. Numerical analysis method was utilized to study the aerodynamic characteristics of the airfoils as well as the blades. Results show that the bionic airfoil inspired by the airfoil at the 50% aspect ratio of the Long-eared Owl’s wing gives rise to a superior lift coefficient and stalling performance and thus can be beneficial to improving the performance of the wind turbine blade. Also, the efficiency of the bionic blade in wind turbine blades tests increases by 12% or above (up to 44%) compared to that of the standard blade. The reason lies in the bigger pressure difference between the upper and lower surface which can provide stronger lift.


2008 ◽  
Vol 112 (1134) ◽  
pp. 469-476 ◽  
Author(s):  
R. Taghavi-Zenouz ◽  
M. Salari ◽  
M. Etemadi

Abstract A recently developed transitional model for boundary-layer flows has been examined on a flat plate and the well-known S809 wind turbine blade. Proposed numerical model tries to simulate streamwise fluctuations, induced by freestream turbulence, in pre-transitional boundary-layer flows by introducing an additional transport equation for laminar kinetic energy term. This new approach can be used for modeling of transitional flows which are exposed to both the freestream turbulence intensity and streamwise pressure gradient, which are known as the most dominant factors in occurrence of transition. Computational method of this model is based on the solution of the Reynolds averaged Navier-Stokes (RANS) equations and the eddy-viscosity concept. The model includes three transport equations of laminar kinetic energy, turbulent kinetic energy and dissipation rate frequency. The present model is capable of predicting either natural or bypass transitional mechanisms, which may occur in attached boundary-layer flows. In addition, the model can simulate transition in the separated free shear layers and the subsequent turbulent re-attachment to form a laminar separation bubble. Flat plate was exposed to different freestream turbulence intensities and streamwise pressure gradients. Wind turbine blade was examined under two different Reynolds numbers, with one of them suitable for the occurrence of laminar separation bubbles on its surfaces. To evaluate the performance of this new model in resolving transitional boundary-layer flows, final results have been compared to those obtained through application of conventional turbulence models. Comparison of final results for the flat plate and the S809 aerofoil with available experimental data show very close agreements.


2019 ◽  
Author(s):  
Azadeh Tavousi Tabatabaei ◽  
Seyed Hossein Mamanpush

The demand for wind and other forms of clean energy is increasing in the US and throughout the world. Wind energy is also expected to provide 14.9% of the global electricity demand by 2020. Under this scenario, a significant amount of wind turbine blades (WTBs) will continue to burden our current landfills until a viable recycling strategy is found. Repurposing or recycling of end- of-use wind turbine blade material will provide both economic and environmental attributes.


2021 ◽  
Vol 11 (22) ◽  
pp. 10764
Author(s):  
Hyeon-Gi Moon ◽  
Sunho Park ◽  
Kwangtae Ha ◽  
Jae-Ho Jeong

Thick airfoils are conventionally adopted in the blade root region of a wind turbine to ensure structural safety under extreme conditions, despite the resulting power loss. To prevent this loss, a passive flow control device known as a vortex generator (VG) is installed at the starting point of the stall to control the flow field near the wall of the suction surface. In this study, we used computational fluid dynamics (CFD) to investigate the aerodynamic characteristics induced as a result of the shape and layout of the VG on a multi-MW wind turbine blade. The separated and vortical flow behavior on the suction surface of the wind turbine blade equipped with VGs was captured by the Reynolds-averaged Navier–Stokes (RANS) steady-flow simulation. The parametric sensitivity study of the VG shape parameters such as the chord-wise length, height, and interval of the fair of VGs was conducted using thick DU airfoil on the blade inboard area. Based on these results, the response surface method (RSM) was used to investigate the influence of the design parameters of the VG. Based on the CFD results, the VG design parameters were selected by considering the lift coefficient and vorticity above the trailing edge. The maximum vorticity from the trailing edge of the selected VG and the lift coefficient were 55.7% and 0.42% higher, respectively, than the average. The selected VG design and layout were adopted for a multi-MW wind turbine and reduced stall occurrence in the blade root area, as predicted by the simulation results. The VG improved the aerodynamic performance of the multi-MW wind turbine by 2.8% at the rated wind speed.


Sensors ◽  
2015 ◽  
Vol 15 (8) ◽  
pp. 19768-19782 ◽  
Author(s):  
Shuai Zhang ◽  
Tobias Jensen ◽  
Ondrej Franek ◽  
Patrick Eggers ◽  
Kim Olesen ◽  
...  

Author(s):  
Hamid Khakpour Nejadkhaki ◽  
Yi-Meng Sylvia Hu ◽  
Michelle Dürrnagel ◽  
Moritz Lippert ◽  
Thanh Danh Anthony Ngo ◽  
...  

Wind turbines can provide energy in developing countries. However, there are limitations to the skilled labor and manufacturing equipment required to manufacture these systems in these regions. Accordingly, the manufacturing process needs to be adapted to the potential of the developing world. In this work, a simplified wind turbine blade design is investigated. The turbine efficiency is analyzed by the blade element momentum (BEM) theory. Two different scenarios are considered to simplify the design of the wind turbine blade. The shape of the blade is simulated by a rectangular root connected to several trapezoidal segments. This results in a simple chord length distribution. The design of the twist angle is also considered. The area under the power curve is used to compare the performance of the simplified blades with that of the original design. Results show that the twist angle can be completely omitted as a tradeoff between efficiency and manufacturability. Depending on the number of simplified design segments, the area under the power curve is reduced between 13% and 25 % with respect to the original blade. The model also demonstrates how the loss in efficiency increases as the simplicity of blade design increases. Still, the design simplification enables a manufacturing process which may facilitate the use of wind energy in the developing world.


Sign in / Sign up

Export Citation Format

Share Document