Combustion Characteristics of Compressed Natural Gas in a Direct Microchannel-Injection Engine under Various Operating Conditions

2013 ◽  
Vol 315 ◽  
pp. 793-798
Author(s):  
Taib Iskandar Mohamad ◽  
How Heoy Geok

The combustion characteristics of compressed natural gas (CNG) in a direct microchannel-injection engine under various operating conditions were investigated. In this study, a novel idea for direct CNG microchannel injection was realized with spark plug fuel injector (SPFI). It is a device developed to convert engine to CNG direct injection (DI) operation with minimal cost and technical simplicity. It was installed and tested on a Ricardo E6 single cylinder engine with compression ratio of 10.5:1 without modification on the original engine structure. The engine test was carried out under various operation conditions at 1100 rpm. Burning rates of CNG were measured using normalized combustion pressure method by which the normalized pressure rise due to combustion is equivalent to the mass fraction burned (MFB) at the specific crank angle. The results showed that the MFB of CNG direct injection is substantially faster but initially slower than the ones of port injection. The optimal fuel injection and ignition timings are 190 °CA ATDC and 25 °CA BTDC respectively. The optimal injection pressure was 6 MPa. Combustion durations were not changed with different injection pressures but ignition delay was affected. There was no direct correlation between injection pressure and ignition delay which is most probably due to the effect of charge flow difference. Changing mixture stoichiometry affects the magnitude of ignition delay. Combustion duration, on the other hand increases with leaner mixture.

Author(s):  
Liu Shenghua ◽  
Zhou Longbao ◽  
Wang Ziyan ◽  
Ren Jiang

The combustion characteristics of a turbocharged natural gas and diesel dual-fuelled compression ignition (CI) engine are investigated. With the measured cylinder pressures of the engine operated on pure diesel and dual fuel, the ignition delay, effects of pilot diesel and engine load on combustion characteristics are analysed. Emissions of HC, CO, NOx and smoke are measured and studied too. The results show that the quantity of pilot diesel has important effects on the performance and emissions of a dual-fuel engine at low-load operating conditions. Ignition delay varies with the concentration of natural gas. Smoke is much lower for the developed dual-fuel engine under all the operating conditions.


2010 ◽  
Author(s):  
Taib Iskandar Mohamad ◽  
Ali Yusoff ◽  
Shahrir Abdullah ◽  
Mark Jermy ◽  
Matthew Harrison ◽  
...  

Author(s):  
G. P. McTaggart-Cowan ◽  
H. L. Jones ◽  
S. N. Rogak ◽  
W. K. Bushe ◽  
P. G. Hill ◽  
...  

The use of pilot-ignited, direct-injected natural gas fuelling for heavy-duty on-road applications has been shown to substantially reduce NOx and particulate matter emissions. The fuelling process involves the injection of pilot diesel near top-dead-center, followed shortly afterwards by the injection of natural gas at high pressure. The injection pressure of the gas and diesel will substantially affect the penetration of the fuel into the combustion chamber, the break-up and atomization of the diesel spray, and the mixing and nature of the turbulent gas jet. To investigate these influences, a series of experiments were performed on a single-cylinder heavy-duty engine over a range of engine operating conditions (exhaust gas recirculation fraction, engine speed, engine load). Due to the unique nature of the single-cylinder engine, it was possible to hold all other parameters constant while only varying injection pressure. The results indicated that injection pressure had a substantial impact on emissions and performance at high loads, where substantial reductions in PM and CO were observed, with only minor increases in NOx and no significant effect on tHC or fuel consumption. At low loads, no significant impact on either emissions or performance was detected. The effects of injection pressure, while still significant, were found to be reduced at increased engine speeds. Higher injection pressures were found to consistently reduce both the number density and the size of particles in the exhaust stream.


2020 ◽  
Vol 15 ◽  

In this present study a theoretical investigation is used to examine the effect of different fuel cetane numbers (CNs) on reducing the ignition delay and exhaust emissions from diesel engine at certain operating conditions. The operating conditions for such diesel engine include compression ratios, engine speeds and intake pressures and temperatures. For this purpose, the fuels with 40 and 50 CN were tested in a four cycle, four cylinders direct injection (DI) diesel engine. Theoretical analyses were conducted for the standard injection pressures (150 bars); the exhaust emissions were tested at engine speeds from 4500 min-1 to 1000 min-1 at full engine load. The results showed that, at all operating conditions, the ignition delay decreases as the cetane number, compression ratio, engine speed, intake pressure and temperature are increased so that combustion efficiency is improved. Also the exhaust emissions NOX, SO2 and CO are reduced when the fuel CN is increased from 40 to 50 for the standard injection pressure (150 bars). Increases in engine torque and power output were observed when the CN is increased.


Author(s):  
Z Huang ◽  
S Shiga ◽  
T Ueda ◽  
H Nakamura ◽  
T Ishima ◽  
...  

A study on the correlation of ignitability with fuel injection timing for direct injection combustion fuelled with natural gas and gasoline was carried out by using a rapid compression machine. The injection pressure of natural gas is 9 MPa and the injection pressure of gasoline is 7 MPa. The study results show that natural gas direct injection possesses higher momentum than that of gasoline, and this is beneficial to the combustion enhancement since a higher intensity of turbulence could be induced. Correlation of ignitability with injection timing shows better behaviour in natural gas direct injection, and this correlation is insensitive to injection modes in the case of natural gas. Thus, natural gas direct injection would have better engine applicability under cold-start conditions. The lean burn limits of natural gas and gasoline direct injection can extend to extremely low equivalence ratio when the ignitable stratified mixture exists around the spark electrode gap by optimizing the injection timing.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 755
Author(s):  
Peng Zhang ◽  
Jimin Ni ◽  
Xiuyong Shi ◽  
Sheng Yin ◽  
Dezheng Zhang

The gasoline/natural gas dual-fuel combustion mode has been found to have unique advantages in combustion. The ignition timing has a significant impact on the combustion characteristics of gasoline engines. Thus, here we study the combustion characteristics of gasoline/natural gas dual-fuel combustion mode to determine the details of their respective advantages under cooperative combustion. A direct-injection turbocharged gasoline engine was modified, and an engine experimental platform was built for the coordinated control of gasoline direct-injection and natural gas port injection. A low-speed and low-load operating point was selected, and the in-cylinder pressure, heat release rate, pressure rise rate, combustion temperature, ignition delay, and combustion duration under the coordinated combustion of gasoline and natural gas dual fuel at the ignition moment were studied through bench tests among other typical combustion parameters. The results show that with the increase of the ignition advance angle, the maximum cylinder pressure, heat release rate, pressure rise rate, and maximum combustion temperature increase. The ignition advance angle is 28°CA-BTDC, and PES40 has the best fuel synergy effect and the best power performance improvement. The effect of the advance of the ignition advance angle on the ignition delay and the combustion duration reaches the peak at 20°CA-BTDC–22°CA-BTDC, and the improvement of the two periods is more significant at PES60.


Energy ◽  
2020 ◽  
Vol 197 ◽  
pp. 117173 ◽  
Author(s):  
Jeongwoo Lee ◽  
Cheolwoong Park ◽  
Jongwon Bae ◽  
Yongrae Kim ◽  
Sunyoup Lee ◽  
...  

Author(s):  
Brian Hollon ◽  
Erlendur Steinthorsson ◽  
Adel Mansour ◽  
Vincent McDonell ◽  
Howard Lee

This paper discusses the development and testing of a full-scale micro-mixing lean-premix injector for hydrogen and syngas fuels that demonstrated ultra-low emissions and stable operation without flashback for high-hydrogen fuels at representative full-scale operating conditions. The injector was fabricated using Macrolamination technology, which is a process by which injectors are manufactured from bonded layers. The injector utilizes sixteen micro-mixing cups for effective and rapid mixing of fuel and air in a compact package. The full scale injector is rated at 1.3 MWth when operating on natural gas at 12.4 bar (180 psi) combustor pressure. The injector operated without flash back on fuel mixtures ranging from 100% natural gas to 100% hydrogen and emissions were shown to be insensitive to operating pressure. Ultra-low NOx emissions of 3 ppm were achieved at a flame temperature of 1750 K (2690 °F) using a fuel mixture containing 50% hydrogen and 50% natural gas by volume with 40% nitrogen dilution added to the fuel stream. NOx emissions of 1.5 ppm were demonstrated at a flame temperature over 1680 K (2564 °F) using the same fuel mixture with only 10% nitrogen dilution, and NOx emissions of 3.5 ppm were demonstrated at a flame temperature of 1730 K (2650 °F) with only 10% carbon dioxide dilution. Finally, using 100% hydrogen with 30% carbon dioxide dilution, 3.6 ppm NOx emissions were demonstrated at a flame temperature over 1600 K (2420 °F). Superior operability was achieved with the injector operating at temperatures below 1470 K (2186 °F) on a fuel mixture containing 87% hydrogen and 13% natural gas. The tests validated the micro-mixing fuel injector technology and the injectors show great promise for use in future gas turbine engines operating on hydrogen, syngas or other fuel mixtures of various compositions.


Sign in / Sign up

Export Citation Format

Share Document