The Optimization Research on Vehicle ESP Control Strategy

2013 ◽  
Vol 321-324 ◽  
pp. 1548-1553
Author(s):  
Liang Hong Zhao ◽  
Ai Min Fan ◽  
Ling Qin

Electronic Stability Program (ESP) is an advanced initiative system for car security. As an integration of subsystems such as ABS, TCS, ESC, etc., this new control system is designed to accurately manipulate the dynamics behaviors of vehicles under critical adhesive conditions, allowing maximum cooperation of vehicles responses to the driver's operation within physical limits. This research has firstly established a dynamical model of an entire vehicle as the controlled object in this study of ESP. Then, the paper moved on to the design of ESP control algorithm strategy, discussing the selection problem of which wheels should the longitudinal control force apply to, and finally proposing an effective improvement on operational stability control of ESP system.

2011 ◽  
Vol 80-81 ◽  
pp. 1065-1069
Author(s):  
De Jun Wang ◽  
Yuan Yuan Wang ◽  
Hong Hong Feng ◽  
Li Hua Wang ◽  
Chao Liu

To adjust the car yawing moment through specific wheels braking is a kind of widely used method by various auto stability control system. The braking of different wheels will have different effects on direction and the size of the car yawing moment. Based on the established simulink simulation model platform of automobile Electronic Stability Program (ESP) control system, this paper makes a research and analysis on the vehicle stability in five kinds of typical working conditions under three kinds of braking force distribution control strategies. Finally, we propose an optimized braking force distribution control strategy which is determined by the road condition.


Author(s):  
K Yi ◽  
N Ryu ◽  
H J Yoon ◽  
K Huh ◽  
D Cho ◽  
...  

Implementation and vehicle tests of a vehicle longitudinal control algorithm for stop-and-go cruise control have been performed. The vehicle longitudinal control scheme consists of a set-speed control algorithm, a speed control algorithm, and a distance control algorithm. A desired acceleration for the vehicle for the control of vehicle-to-vehicle relative speed and clearance has been designed using linear quadratic optimal control theory. Performance of the control algorithm has been investigated via vehicle tests. Vehicle tests have been conducted using two test vehicles. A 2000 cm3 passenger car equipped with a radar distance sensor, throttle/brake actuators and a controller has been used as a subject vehicle in the vehicle tests. A millimetre wave radar sensor has been used for distance measurement. A step motor and an electronic vacuum booster have been used for throttle/brake actuators. It has been shown that the implemented vehicle longitudinal control system can provide satisfactory performance in vehicle set-speed control and vehicle clearance control at lower speeds.


2014 ◽  
Vol 1006-1007 ◽  
pp. 575-580
Author(s):  
Qing Xie Chen ◽  
Jing Jing Chen ◽  
Yi Biao Fan

Targeting development of control system of a permanent magnet synchronous motor applied to high precision requirement, A strategy is researched to develop a single chip with built-in sensor-less control algorithm which is used as the control core of PMSM control system, the composition of the hardware and the realization of software of the chip are designed, and the simulation experiment is carried out to verify feasibility and rationality of the control strategy as well.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Shu Wang ◽  
Xuan Zhao ◽  
Qiang Yu

Vehicle stability control should accurately interpret the driving intention and ensure that the actual state of the vehicle is as consistent as possible with the desired state. This paper proposes a vehicle stability control strategy, which is based on recognition of the driver’s turning intention, for a dual-motor drive electric vehicle. A hybrid model consisting of Gaussian mixture hidden Markov (GHMM) and Generalized Growing and Pruning RBF (GGAP-RBF) neural network is constructed to recognize the driver turning intention in real time. The turning urgency coefficient, which is computed on the basis of the recognition results, is used to establish a modified reference model for vehicle stability control. Then, the upper controller of the vehicle stability control system is constructed using the linear model predictive control theory. The minimum of the quadratic sum of the working load rate of the vehicle tire is taken as the optimization objective. The tire-road adhesion condition, performance of the motor and braking system, and state of the motor are taken as constraints. In addition, a lower controller is established for the vehicle stability control system, with the task of optimizing the allocation of additional yaw moment. Finally, vehicle tests were carried out by conducting double-lane change and single-lane change experiments on a platform for dual-motor drive electric vehicles by using the virtual controller of the A&D5435 hardware. The results show that the stability control system functions appropriately using this control strategy and effectively improves the stability of the vehicle.


Author(s):  
Lucas Ginzinger ◽  
Benjamin Heckmann ◽  
Heinz Ulbrich

A new approach to control a rubbing rotor by applying an active auxiliary bearing has been developed. The control force is applied indirectly using the auxiliary bearing, only in case of rotor rubbing. The auxiliary bearing is actuated using two unidirectional actuators. A three-phase control strategy has been developed which stabilizes the rotor system in case of an impact load and effectively avoids “backward whirling” which is very destructive. As soon as the load ceased the auxiliary bearing is separated from the rotor again and normal operation mode is continued. During the normal operation state, the feedback control does not interfere with the rotor system at all. A test rig has been developed to experimentally verify the control system. Various experiments show the success of the control strategy. In case of rubbing, the contact forces are reduced up to 95 percent. At the same time, the rotor deflection is decreased too. The activation and deactivation of the control system is operated fully automatically. A simulation framework for an elastic rotor including the non-smooth nonlinear dynamics of contacts is presented, which has been used to develop the feedback controller.


Author(s):  
Lucas Ginzinger ◽  
Heinz Ulbrich

In this contribution, a new approach to control a rubbing rotor by applying an active auxiliary bearing is presented. The auxiliary bearing is attached to the foundation via two unidirectional actuators. The control force is applied indirectly using the auxiliary bearing, only in case of rotor rubbing. During a normal operation state, the feedback control does not interfere with the rotor system at all. A robust control system has been developed which significantly reduces the intensity of rubbing by stabilizing the rotor system and assuring an optimal rubbing state in case of a too large rotor amplitude. The two-phase control strategy guarantees a smooth transition from free rotor motion to the state of synchronous full annular rub. A test rig has been developed to experimentally verify the control system. Various experiments show the success of the control strategy. In case of rubbing, the contact forces are reduced up to 80 per cent, which results in significantly lower loads. At the same time, the rotor deflection is decreased too. For industrial applications, the activation of the control system can be operated fully automatically. The high efficiency of the control algorithm allows an implementation on microcontrollers. The developed control of the auxiliary bearing reduces the load and the noise of the system during rotor rubbing significantly.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiaofang Kang ◽  
Jian Wu ◽  
Yewei Zhang ◽  
Guoliang Liu ◽  
Suhui Zhang ◽  
...  

A decentralized control strategy can effectively solve the control problem of the large-scale time delayed structures. In this paper, combining the overlapping decentralized control method, linear matrix inequality (LMI) method, and H∞ control algorithm, overlapping decentralized H∞ control approach of the time delayed structures has been established. The feedback gain matrixes of all subsystems are obtained by this method based on genetic algorithm optimization tools and the specific goal of optimization control. The whole vibration control system of the time delayed structures is divided into a series of overlapping subsystems by overlapping decentralized control strategy. The feedback gain matrixes of each subsystem can be obtained by using H∞ control algorithm to calculate each subsystem. The vibration control of a twenty layers’ antiseismic steel structure Benchmark model was analyzed with the numerical method. The results show that the proposed method can be applied to control system with time delay. The overlapping decentralized control strategies acquire the similar control effects with that of the centralized control strategy. Moreover, the flexibility of the controller design has been enhanced by using overlapping decentralized control strategies.


2011 ◽  
Vol 317-319 ◽  
pp. 738-741
Author(s):  
Hua Li ◽  
Da Xu ◽  
Jian Zhang ◽  
Hai Lin

Aimed at work characteristics and work environment of auto loading manipulator for large caliber gun, its control system based on double CPU is designed. Then the paper expounds the components of the entire control system and corresponding principle. The control system can test control algorithm and motion trajedy plan in order to develop new control strategy and short development time.


Sign in / Sign up

Export Citation Format

Share Document