Development of High-Speed Transmission Error Dynamic Detection System Based on NIOS-II and USB

2013 ◽  
Vol 325-326 ◽  
pp. 883-886
Author(s):  
Yong Zheng ◽  
Yan Chen ◽  
Ge Zhu

This paper proposes a high-speed transmission error (TE) dynamic detection system based on NIOS-II and USB. The detection system is in the realization of data acquisition on a FPGA chip, and sends the collected data to specialized data transmission circuit by the chip NIOS-II CPU core, the data transmission circuit composed of USB2.0 main control chip and FIFO chip, which can realize the two-direction communication between data acquisition circuit and PC, so as to realize the TE detection of high-speed side.

2012 ◽  
Vol 229-231 ◽  
pp. 1543-1546
Author(s):  
Xiao Bo Zhou ◽  
Min Xia ◽  
Hai Long Cheng

To improve data transmission performance of the data acquisition card, a design of high-speed data transmission system is proposed in the thesis. Using FPGA of programmable logic devices, adopting Verilog HDL of hardware description language, the design of modularization and DMA transmission method is implemented in FPGA. Eventually the design implements the data transmission with high-speed through PCI Express interface. Through simulation and verification based on hardware system, this design is proved to be feasible and can satisfy the performance requirements of data transmission in the high-speed data acquisition card applied in high-speed railway communication. The design also has some value of application and reference for a universal data acquisition card.


2021 ◽  
Vol 2113 (1) ◽  
pp. 012065
Author(s):  
Yu Gu ◽  
Mengqi Fan ◽  
Chuanqian Tang ◽  
Guojing Zhang ◽  
Xiaodan Zhang

Abstract Since the study in the field of fusion has gradually developed toward the long-pulse experiment mode, long-pulse data has gradually become one of the main data types for pulsed experiments in the field of fusion. For long-pulse data, which is a kind of pulse-type data, it will be more difficult to transmit and store than short-pulse data because of its significant characteristics. In addition, in the design of data acquisition and control system (DACS) in fusion field, Experimental Physics and Industrial Control System (EPICS) has now gradually become the main framework of experimental control system to meet the diversity of devices and complexity of subsystems in large experimental system. However, due to the limitation of EPICS, its effectiveness in handling data transmission and storage under high speed data acquisition is not satisfactory. To solve the data transmission and storage under high-speed sampling, this paper proposes a data transmission and storage solution based on TCP/IP protocol and MDSplus database, which is designed with the concept of segmentation, i.e., data generated from experiments longer than 100 seconds are uploaded and stored in a segmented form. Currently, this system has been tested and applied, and the test result shows that the solution is feasible and the overall test system operates stably and reliably.


Author(s):  
Zhimin Zhang ◽  

At present, the error control method for high-speed serial data transmission obtains the errors by comparison and then controls them. If the data transmission channel is not denoised, the packet loss and error codes become serious, and energy consumption increases. The use of fuzzy classification is proposed to control data transmission errors. The method uses the combination of wavelet transform and transform domain difference to double denoise the channel, and it completes the clustering of data transmission errors by fuzzy classification. Considering packet loss, error codes, and energy consumption in data transmission error control, when the communication distance between two nodes is small, automatic repeat request is used to control data transmission errors. As the distance between nodes increases, forward error correction is used to control data transmission errors. When the communication distance gradually increases, data transmission errors are controlled by hybrid automatic repeat request. Experiments showed that the proposed method can reduce the data transmission error, control energy consumption, packet loss rate, and bit error rate, and enhance the denoising effect.


Author(s):  
Brian Anichowski ◽  
Ahmet Kahraman ◽  
David Talbot

This paper complements recent investigations [Handschuh et al (2014), Talbot et al (2016)] of the influences of tooth indexing errors on dynamic factors of spur gears by presenting data on changes to the dynamic transmission error. An experimental study is performed using an accelerometer-based dynamic transmission error measurement system incorporated into a high-speed gear tester to establish baseline dynamic behavior of gears having negligible indexing errors, and to characterize changes to this baseline due to application of tightly-controlled intentional indexing errors. Spur test gears having different forms of indexing errors are paired with a gear having negligible indexing error. Dynamic transmission error of gear pairs under these error conditions is measured and examined in both time and frequency domains to quantify the transient effects induced by these indexing errors. Both measurements indicate clearly that the baseline dynamic response, dominated by well-defined resonance peaks and mesh harmonics, are complemented by non-mesh orders of transmission error due the transient behavior induced by indexing errors.


2012 ◽  
Vol 472-475 ◽  
pp. 2315-2319
Author(s):  
Peng Wang ◽  
Chen Wu

A high-speed data acquisition card using USB 3.0 interface has been designed in order to solve the problem that traditional data acquisition card could not take both data transmission bandwidth and easy connection with PC into account. The data acquisition card controlled the dual-channel 12-bit 20Msps ADC for asynchronous parallel sampling using FPGA as core control module, which made the sampling rate up to 40Msps. The sampled data which was processed by FPGA transferred synchronous from FIFO interface to PC via USB controller. The basic structure of hardware and the basic design method for software and firmware were given in this paper, in which how to use FPGA to realize FIFO was elaborated in detail. The timing simulation of using asynchronous parallel A/D conversion technology and using ADC device of 40Msps sampling rate for FIFO internal data transmission were simulated respectively, thus verified the reliability of asynchronous parallel A/D conversion.


2018 ◽  
Vol 51 (7-8) ◽  
pp. 205-212 ◽  
Author(s):  
Beşir Demir ◽  
Ahmet Tumay ◽  
Mehmet Efe Ozbek ◽  
Enver Cavus

Background In industrial disasters, early detection of problems and crisis management are critical for saving the lives of people and reducing the impact of disasters. Purpose In this study, we design a special gateway system that bridges the gap between different communication protocols and enables legacy supervisory control and data acquisition systems to function early detection systems for potential industrial disasters. Methods The system uses a new queue mechanism to substantially improve the problem of data loss found in conventional supervisory control and data acquisition systems and utilizes identification (ID) prioritization to enable early detection of problems. The proposed system is implemented and tested on a Linux-based, 3G-capable Modbus gateway system. Modbus is used as the communication protocol and 3G technology is utilized to provide high-speed wireless data transfer components. The Modbus gateway device uses an ARM-based EP9302 processor and has digital input/output, relay outputs, and RS485 outputs. Conclusion This study is significant as it is the first work to show the application of the priority query execution method for Modbus gateway devices.


2011 ◽  
Vol 339 ◽  
pp. 63-66
Author(s):  
Jia Bing He ◽  
Zhen Yu Yang ◽  
Wu Ji Jiang

Thickness dynamic detection of the various types of thin sheets is a very important technology in industrial production and product testing. This paper describes a thickness detection system by the combine of mechanical amplification and electronic amplification. The working Principle is that the detected subtle variable signal with thickness changing is amplified applying leverage amplification effect, then re-amplified by processing circuit to identify thickness of the detected object in its high speed moving.


Sign in / Sign up

Export Citation Format

Share Document