Permanganate Based Chemiluminescence Analysis of Cefoperazon

2013 ◽  
Vol 333-335 ◽  
pp. 1807-1810
Author(s):  
De Yi Zhang ◽  
Li Wen Zheng

In this paper, a novel method fog determination of chemiluminescence (CL) spectra utilizing LS55 luminescence spectrophotometer was proposed. By this means, the CL spectra generated from the oxidation of cephalosporins with potassium permanganate was investigated. The result indicated that acid potassium permanganate CL system has more then three emitting species, excited state Mn(Ⅱ), Mn(Ⅲ) and singlet oxygen all could be assigned as the possible emitting species of this CL system. Base on above investigation results, sodium cefoperazone in pharmaceutical samples was determined by a CL analysis process combining with flow-injection technique. The detection limits estimated by a conservative model (3σ) of cefoperazone was 0.1µg dm-3, and the maximum relative standard deviation (RSD) was not more than 0.8 % (n=11, ρ=20µg dm-3).

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Sabah Shiri ◽  
Tahere Khezeli ◽  
Sami Sajjadifar ◽  
Ali Delpisheh ◽  
Moayed Avazpour ◽  
...  

A novel, simple, and more sensitive spectrophotometric procedure has been developed for the determination of vitamin B2(riboflavin) by an aqueous two-phase extraction (ATPE). An ATPE is formed mostly by water and does not require an organic solvent. Other ATPE components used in this study were the polymer, polyethylene glycol (PEG), and some salts such as Na2SO4and Na2CO3. The method is based on the interaction between vitamin B2(riboflavin) and sodium sulfate (Na2SO4) in an acidic medium (pH 6.4). The influences of effective parameters such as salt (type and concentration), polyethylene glycol (molecular weight and concentration), temperature, centrifuging time, and pH of the sample solution were studied and optimized. The linear range was 1.3–320 ng/mL (R2=0.9991;n=10) with the relative standard deviation (RSD) for 60 ng/mL 3.68%. The limit of detection (LOD) calculated from three times of standard deviation of blank were 0.2 ng/mL and recoveries from analysis of real samples between 94.82% and 103.98% were obtained for the determination of vitamin B2(riboflavin) in urine and pharmaceutical samples.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Oya Aydın Urucu ◽  
Şeyda Dönmez ◽  
Ece Kök Yetimoğlu

A novel method was developed for determination of trace amounts of lead in water and food samples. Solidified floating organic drop microextraction was used to preconcentrate the lead ion. After the analyte was complexed with 1-(2-pyridylazo)-2-naphthol, undecanol and acetonitrile were added as extraction and dispersive solvent, respectively. Variables such as pH, volumes of extraction and dispersive solvents, and concentration of chelating agent were optimized. Under the optimum conditions, the detection limit of Pb (II) was determined as 0.042 µg L−1 with an enrichment factor of 300. The relative standard deviation is <10%. Accuracy of the developed procedure was evaluated by the analysis of certified reference material of human hair (NCS DC 73347) and wastewater (SPS-WW2) with satisfactory results. The developed procedure was then successfully applied to biscuit and water samples for detection of Pb (II) ions.


Author(s):  
P.F. Collins ◽  
W.W. Lawrence ◽  
J.F. Williams

AbstractA procedure for the automated determination of ammonia in tobacco has been developed. Ammonia is extracted from the ground tobacco sample with water and is determined with a Technicon Auto Analyser system which employs separation of the ammonia through volatilization followed by colourimetry using the phenate-hypochlorite reaction. The procedure has been applied to a variety of tobaccos containing from 0.02 to 0.5 % ammonia with an overall relative standard deviation of 2 %. The accuracy of the procedure as judged by recovery tests and by comparison to a manual distillation method is considered adequate


1998 ◽  
Vol 81 (4) ◽  
pp. 763-774 ◽  
Author(s):  
Joanna M Lynch ◽  
David M Barbano ◽  
J Richard Fleming

Abstract The classic method for determination of milk casein is based on precipitation of casein at pH 4.6. Precipitated milk casein is removed by filtration and the nitrogen content of either the precipitate (direct casein method) or filtrate (noncasein nitrogen; NCN) is determined by Kjeldahl analysis. For the indirect casein method, milk total nitrogen (TN; Method 991.20) is also determined and casein is calculated as TN minus NCN. Ten laboratories tested 9 pairs of blind duplicate raw milk materials with a casein range of 2.42- 3.05℅ by both the direct and indirect casein methods. Statistical performance expressed in protein equivalents (nitrogen ⨯ 6.38) with invalid and outlier data removed was as follows: NCN method (wt%), mean = 0.762, sr = 0.010, SR = 0.016, repeatability relative standard deviation (RSDr) = 1.287℅, reproducibility relative standard deviation (RSDR) = 2.146%; indirect casein method (wt℅), mean = 2.585, repeatability = 0.015, reproducibility = 0.022, RSDr = 0.560℅, RSDR = 0.841; direct casein method (wt℅), mean = 2.575, sr = 0.015, sR = 0.025, RSDr = 0.597℅, RSDR = 0.988℅. Method performance was acceptable and comparable to similar Kjeldahl methods for determining nitrogen content of milk (Methods 991.20, 991.21,991.22, 991.23). The direct casein, indirect casein, and noncasein nitrogen methods have been adopted by AOAC INTERNATIONAL.


2014 ◽  
Vol 1033-1034 ◽  
pp. 53-56 ◽  
Author(s):  
Jun Yi Pan ◽  
Xiao Juan Wei

A novel method for the determination of rhodium in rhodium-loaded carbon catalyst samples was established by inductively coupled plasma atomic emission spectrometry after samples digested by microwave oven with aqua regia. Such experiment conditions were investigated as the influence of sample digestion methods, digestion time, digestion temperature and interfering ions on the determination. Under the optimized conditions, the limits of detection (LODs) of Rh for tested solutions were 9 ng mL-1. The relative standard deviations (RSDs) for Rh were 2.11 (CRh = 1 mg L-1, n = 7). The linear ranges of calibration graphs for Rh were 0 ~ 150.00 mg L-1. The proposed method was applied to determine the practical samples with good recoveries and satisfactory results.


2013 ◽  
Vol 448-453 ◽  
pp. 406-408
Author(s):  
Jing Liu ◽  
Xiao Na Ji ◽  
Qing Kai Ren ◽  
Sheng Shu Ai ◽  
Li Jun Wan ◽  
...  

We established a method fordetermination of nitrate in water by High Performance Liquid Chromatography(HPLC). The sample was analysed by HPLC-ADA and was quantitated by externalstandard method after being simply processed. This methd has the advantages ofhigh separation efficiency and fast analysis. The experiment result showed thatthe linearly dependent coefficient was0.994, the recovery rate was between 98.7%~105.7%,the relative standard deviation(RSD)wasless than 2.1 %, and the lowest detectable limit is 0.01ng (S/N=1.6).


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Mohsen Keyvanfard ◽  
Khadijeh Alizad ◽  
Razieh Shakeri

A new kinetic spectrophotometric method is described for the determination of ultratrace amounts of sodium cromoglycate (SCG). The method based on catalytic action of SCG on the oxidation of amaranth with periodate in acidic and micellar medium. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of the amaranth at 518 nm, for the first 4 min from initiation of the reaction. Calibration curve was linear in the range of 4.0−36.0 ng mL−1SCG. The limit of detection is 2.7 ng mL−1SCG. The relative standard deviation (RSD) for ten replicate analyses of 12, 20, and 28 ng mL−1SCG was 0.40%, 0.32%, and 0.53%, respectively. The proposed method was used for the determination of SCG in biological samples.


2005 ◽  
Vol 88 (5) ◽  
pp. 1404-1412 ◽  
Author(s):  
Sarah Hasnip ◽  
Colin Crews ◽  
Nicholas Potter ◽  
Paul Brereton ◽  
Henri Diserens ◽  
...  

Abstract An interlaboratory study was performed to evaluate the effectiveness of a headspace gas chromatography (GC) method for the determination of 1,3-dichloro-propan-2-ol (1,3-DCP) in soy sauce and related products at levels above 5 ng/g. The test portion is mixed with an internal standard (d5-1,3-DCP) and ammonium sulfate in a sealed headspace vial. After achieving equilibrium, the headspace is sampled either by gas-tight syringe or solid-phase microextraction (SPME) and analyzed by GC with mass spectrometric detection. 1,3-DCP is detected in the selected-ion mode (monitoring m/z 79 and 81 for 1,3-DCP and m/z 82 for the deuterated internal standard) and quantified by measurement against standards. Test materials comprising soy, dark soy, mushroom soy, and teriyaki sauces, both spiked and naturally contaminated, were sent to 9 laboratories in Europe, Japan, and the United States; of these, 5 used SPME and 4 used syringe headspace analysis. Test portions were spiked at 5.0, 10.0, 20.0, 100.0, and 500.0 ng/g. The average recovery for spiked blank samples was 108% (ranging from 96–130%). Based on results for spiked samples (blind pairs at 5, 10, 20, 100, and 500 ng/g) as well as a naturally contaminated sample (split-level pair at 27 and 29 ng/g), the relative standard deviation for repeatability (RSDr) ranged from 2.9–23.2%. The relative standard deviation for reproducibility (RSDR) ranged from 20.9–35.3%, and HorRat values of between 1.0 and 1.6 were obtained.


2018 ◽  
Vol 33 (2) ◽  
pp. 47
Author(s):  
Orlando Fatibello-Filho ◽  
Heberth Juliano Vieira

A spectrophotometric flow injection method for the determination of paracetamol in pharmaceutical formulations is proposed. The procedure was based on the oxidation of paracetamol by sodium hypochloride and the determination of the excess of this oxidant using o-tolidine dichloride as chromogenic reagent at 430 nm. The analytical curve was linear in the paracetamol concentration range from 8.50 x 10-6 to 2.51 x 10-4 mol L-1 with a detection limit of 5.0 x 10-6 mol L-1. The relative standard deviation was smaller than 1.2% for 1.20 x 10-4 mol L-1 paracetamol solution (n = 10). The results obtained for paracetamol in pharmaceutical formulations using the proposed flow injection method and those obtained using a USP Pharmacopoeia method are in agreement at the 95% confidence level.


2002 ◽  
Vol 67 (10) ◽  
pp. 661-667 ◽  
Author(s):  
Snezana Mitic ◽  
Valentina Zivanovic

Akinetic method for the determination of phenol is proposed. The method is based on the inhibiting effect of phenol on the Mn(II) catalysis of the oxidation of malachite green with potassium periodate. The reaction rate was followed spectrophotometrically at 615 nm. Kinetic expression for the reaction in the presence and absence of phenol are postulated. The optimal experimental conditions for the determination of phenol were established and phenol was determined in concentrations from 30.0 to 188.0 ng/cm3 with a relative standard deviation of 5.5%. The lower detecton limit is 7.8 ng/cm3. The effects of certain foreign ions upon the reaction rate were determined for the assessment of the selectivity of the method. The method was applied for the determination of phenol in tap and river water.


Sign in / Sign up

Export Citation Format

Share Document