Effect of Cryogenic Minimum Quantity Lubrication (CMQL) on Cutting Temperature and Tool Wear in High-Speed End Milling of Titanium Alloys

2010 ◽  
Vol 34-35 ◽  
pp. 1816-1821 ◽  
Author(s):  
Yu Su ◽  
Ning He ◽  
Liang Li

Cryogenic minimum quantity lubrication (CMQL) is a kind of green cooling/lubrication technique, which consists of the application of a small amount of lubricant (6-100 ml/h), delivered in a refrigerated compressed gas stream to the cutting zone. This paper experimentally investigates the effect of CMQL on cutting temperature and tool wear in high-speed end milling of titanium alloys. Comparative experiments were conducted under different cooling/lubrication conditions, i.e. dry milling, refrigerated air cutting, and CMQL. The refrigerated gas equipment was manufactured based on composite refrigeration method to provide the refrigerated air. The experimental results show that application of CMQL resulted in drastic reduction in cutting temperature and tool wear especially when machining titanium alloys at a high cutting speed.

2017 ◽  
Vol 867 ◽  
pp. 165-170
Author(s):  
Isha Srivastava ◽  
Ajay Batish

The aim of this study were to evaluate the performance of PVD (TiAlN+TiN) and CVD (TiCN+Al2O3+TiN) coated inserts in end milling of EN–31 hardened die steel of 43±1 HRC during dry and MQL (Minimum quantity lubrication) machining. The experiments were conducted at a fixed feed rate, depth of cut and varying cutting speed to measure the effect of cutting speed on cutting force and tool wear of CVD and PVD-coated inserts. The performance of CVD and PVD-coated inserts under dry and MQL condition by measuring the tool wear and cutting force were compared. During cutting operation, it was noticed that PVD inserts provide less cutting force and tool wear as compared to the CVD inserts under both dry as well as the MQL condition because PVD inserts have a thin insert coating and CVD inserts have a thick insert coating, but PVD inserts experience catastrophic failure during cutting operation whereas CVD inserts have a capability for continuous machining under different machining. Tool wear has measured by SEM analysis. The result shows that MQL machining provides the optimum results as compared to the dry condition. MQL machining has the ability to work under high cutting speed. As the cutting speed increases the performance of dry machining was decreased, but in MQL machining, the performance of the inserts was increased with increases of cutting speed. MQL machining generates less cutting force on the cutting zone and reduces the tool wear which further increase the tool life.


2009 ◽  
Vol 407-408 ◽  
pp. 612-615 ◽  
Author(s):  
Erween Abdul Rahim ◽  
Hiroyuki Sasahara

Nowadays, an increase on demands of aerospace components has led to implementation of high speed machining (HSM). The principal factors in the performance of aerospace materials are strength-to-weight ratio, fatigue life, fracture toughness, survivability and of course, reliability. However, when HSM is coupled with dry or near dry machining, it will present considerable technical challenges to the manufacturing sector especially when the integrity of the machined surface is concerned. In this investigation, the effect of high speed drilling (HSD) conditions on the performance and surface integrity of Inconel 718 were studied. Hole was drilled individually using TiAlN coated carbide insert drill (14 mm in diameter) under minimum quantity of lubrication (MQL) condition. Results showed that uniform flank wear and chipping were the dominant tool failure modes. Moreover, the results showed an increase in cutting temperature with increasing cutting speed and feed rate. Thrust force and torque decreased linearly with the increasing cutting speed but significantly increased when higher feed rate is employed. Cutting speed significantly influenced the distribution of surface roughness value. Variations of hardness readings were recorded beneath the machined surfaces, they were due to the hardening effects caused by concentration of high temperature and stresses on the workpiece.


2018 ◽  
Author(s):  
Kai Guo ◽  
Bin Yang ◽  
Jie Sun ◽  
Vinothkumar Sivalingam

Titanium alloys are widely utilized in aerospace thanks to their excellent combination of high-specific strength, fracture, corrosion resistance characteristics, etc. However, titanium alloys are difficult-to-machine materials. Tool wear is thus of great importance to understand and quantitatively predict tool life. In this study, the wear of coated carbide tool in milling Ti-6Al-4V alloy was assessed by characterization of the worn tool cutting edge. Furthermore, a tool wear model for end milling cutter is established with considering the joint effect of cutting speed and feed rate for characterizing tool wear process and predicting tool wear. Based on the proposed tool wear model equivalent tool life is put forward to evaluate cutting tool life under different cutting conditions. The modelling process of tool wear is given and discussed according to the specific conditions. Experimental work and validation are performed for coated carbide tool milling Ti-6Al-4V alloy.


2002 ◽  
Vol 124 (4) ◽  
pp. 820-832 ◽  
Author(s):  
Jiancheng Liu ◽  
Kazuo Yamazaki ◽  
Hiroyuki Ueda ◽  
Norihiko Narutaki ◽  
Yasuo Yamane

In order to increase the accurate finishing productivity of pearlitic cast iron, face milling by CBN (Cubic Boron Nitride) cutting tools was studied. The main focus of the study is the machinability investigation of pearlitic cast iron with CBN cutting tools by studying the relationships among machining conditions such as feed rate, cutting speed as well as CBN cutting tool type, tool wear, workpiece surface quality, cutting forces, and cutting temperature. In addition, an emphasis is put on the effect of Al additive in pearlitic cast iron on its machinability and tool wear characteristics. High-speed milling experiments with CBN cutting tools were conducted on a vertical machining center under different machining conditions. The results obtained provide a useful understanding of milling performance by CBN cutting tools.


Author(s):  
S. Vignesh ◽  
U. Mohammed Iqbal

This paper is concentrated on the exploration of carbonaceous nanocutting fluids with the concept of tri-hybridization with improved lubricative and cooling properties by using multi-walled carbon nanotubes, hexagonal boron nitride , and graphene nanoparticles with neat cold-pressed coconut oil in a fixed volumetric proportion. The rheological properties of the nanofluids were studied to assess their performance in real-time end milling operations using an AA7075 work piece on a CNC lathe machine under a minimum quantity lubrication environment. At the outset, the carbonaceous nanofluids gave good performance when compared to conventional cutting fluids. Furthermore, the surfaces of the tribo-pairs and the chips formed were analyzed using a profilometer and high-end microscopes. The results obtained from the experiments confirm that the tri-hybridized carbonaceous nanolubricant has reduced the cutting force, tool wear, and surface roughness when correlated to monotype nanofluids. The scanning electron microscope images of the surface and tool were studied and it was found that the surface quality was maintained while end milling with tri-hybridized carbonaceous nanofluid. Improvement of ∼17%, 20% and 25% in cutting forces, surface roughness and tool wear was found in tri-hybrid fluid when compared to other fluids. Thus, the present work indicates that the addition of carbon-based nanoparticles with coconut oil has offered better performance and is found to be a credible alternative to existing conventional cutting fluids.


2012 ◽  
Vol 426 ◽  
pp. 139-142 ◽  
Author(s):  
Zhi Qiang Liu ◽  
X.J. Cai ◽  
Ming Chen ◽  
Qing Long An

Different parameters of Minimum Quantity Lubrication (MQL) system, including air pressure, oil quantity, nozzle position, might have different influences on the cutting force and the cutting temperature. This paper presents an experiment of end-milling titanium alloy with MQL system. The objective of the experiment is to investigate the influences of MQL parameters in milling of Ti-6Al-4V. The results of experiment show that there are different effects on the cutting force and the cutting temperature with different MQL parameters, which will help to select different parameters in the end-milling process of Ti-6Al-4V.


Author(s):  
Norsalawani Binti Mohamad ◽  
Rubina Bahar

Miniature drilling is widely used in industries including electronics and reconstructive surgeries to create small sized holes. Chip removal and effective supply of coolant are the two limiting factors that make the process more complex compared to other meso scale machining processes and also contribute to the tool wear. The tool wear in the process is mainly caused by the interaction, motion and chip production between the tool and work piece. Uniform supply of coolant must be ensured to reach the drilled cavity to keep the tool wear to a minimal level. This study includes experimental investigation of the tool condition after applying Minimum Quantity Lubrication (MQL) system as a greener approach as the name indicates. The tool condition with MQL has also been compared with dry and flood cooling. Two different types of drill bit materials (High Speed Steel and Carbide) have been tested under same experimental condition to drill through Aluminum Alloy 6061 and it has been found that overall performance in terms of tool condition after applying MQL was better compared to the other two methods. The overall wear propagation area was measured for both the conditions. It was seen, the wear propagation covered minimal area with MQL while for flood and dry condition wear was spread over a bigger area on flank. 


Sign in / Sign up

Export Citation Format

Share Document