Absorbing/Shielding Property of Graphite-FeSi by Mechanical Milling

2013 ◽  
Vol 341-342 ◽  
pp. 166-170
Author(s):  
Yong Gang Xu ◽  
Li Ming Yuan ◽  
Jun Cai ◽  
De Yuan Zhang

Graphite-FeSi absorbents were fabricated by mechanical milling method. The complex permittivity and permeability were measured in frequency 1-4 GHz, and then reflection loss (RL) and shielding effectiveness (SE) were calculated. It was obtained that the graphite was bonded to the surface of FeSi by X-ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images. The permittivity and permeability could be enlarged as graphite added in the milling process. It was attributed to the excellent conductivity of graphite and interactions of the two particles. The graphite-FeSi composites had a better shielding property (maximum 25.93 dB) in 1-4 GHz as well as the absorbing property at 1GHz than FeSi composites.

2021 ◽  
Vol 12 (4) ◽  
pp. 2523-2529
Author(s):  
Daniel Sam N ◽  
Anish C I ◽  
Sabeena G ◽  
Rajaduraipandian S ◽  
Manobala ◽  
...  

Sol gel methods were used for the study of the antimicrobial activity of Cd-TiO2 against gram-negative and positive bacteria. These Cd-TiO2 have been characterized by various optical and techniques. They have been exhibited by X-ray diffraction, scanning electron microscopy, ultraviolet spectroscopy, and infrared spectroscopy. The structures of the various XRD patterns indicate that the product has a structure. The particle size of Cd-TiO2 is 35nm. The SEM images confirm the spherical appearance of the sample. The energy X-ray spectra have been confirmed as well and then C, O, Ti, Cd, Pt element are present in Cd-TiO2. The weight percentage of Cadmium is 5.8%, Ti is 51.03%, C is 5.13% and O is 31.75% in Cd-TiO2. BET image shows that the major pore size distribution of Cd-TiO2 is ranged from 2.24 nm. The Cd-TiO2 that the antibacterial activity when tested against the pathogens only gram-negative bacteria such as Pseudomonas. The zone of minimum inhibition concentration was measured in a range of 20mm in 25μl and 30mm in 100μl.


2017 ◽  
Vol 751 ◽  
pp. 825-830 ◽  
Author(s):  
Phuri Kalnaowakul ◽  
Tonghathai Phairatana ◽  
Aphichart Rodchanarowan

In this study, the photocatalytic properties and morphology of TiO2, ZnO, Ag-graphene-zinc oxide (Ag-G-ZnO) and Ag-graphene-titanium dioxide (Ag-G-TiO2) nanocomposite were compared. The Ag-G-ZnO and Ag-G-TiO2 nanocomposite were successfully prepared by thermal decomposition of colloidal solution. These prepared composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Vis spectroscopy and photocatalytic activities. The results from XRD patterns show that Ag-G-TiO2 composites and the Ag-G-ZnO nanocomposites were in the form of fcc and hcp crystal structure, respectively. The SEM images show that at calcination of 500 °C for 3 h, the composite thin film of Ag-G-ZnO and Ag-G-TiO2 were homogenous. In the case of the photocatalytic experiments using methylene blue dye (MB) under UV irradiation, the order of the photocatalytic activities from high to low performances are Ag-G-ZnO, Ag-G-TiO2, ZnO and TiO2, respectively.


2013 ◽  
Vol 829 ◽  
pp. 515-519 ◽  
Author(s):  
Shaghayegh Gharegozloo ◽  
Hossein Abdizadeh ◽  
Abolghasem Ataie

The interest in using CNTs as the reinforcement of metal matrix nanocomposites has been growing considerably due to their enhanced properties. In the present work, nickel was reinforced by carbon nanotubes (CNTs) via high energy mechanical milling method. The effects of various amounts of CNTs (5%, 10%, 20% and 30%) and different milling times (1, 5, 10 and 15 hours) were investigated. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and vibrating sample magnetometer (VSM) analysis were used for evaluation of phase composition, morphology and magnetic properties of the samples, respectively. The results showed a homogeneous dispersion of CNTs into the nickel matrix phase by mechanical milling. It was observed that the increase in the milling time, for a particular amount of CNTs, caused a decrease of mean crystallite size from 56 nm to 35 nm. The increase of CNTs amount also resulted in the powder particle refinement. VSM analysis showed that with the increase of CNTs from 0% to 30%, the magnetization of the samples decreases from 52.36 to 30.74 emu/g, and the coercivity of the nanocomposites increases from 61.45 to 114 Oe.


2010 ◽  
Vol 659 ◽  
pp. 159-164 ◽  
Author(s):  
Gréta Gergely ◽  
Ferenc Wéber ◽  
Mihály Tóth ◽  
Attila Lajos Tóth ◽  
Zsolt E. Horváth ◽  
...  

Hydroxyapatite (HAp) was successfully produced from recycled eggshell, seashell and phosphoric acid by using two different type of milling method (attrition milling and ball milling). According to the analysis, the attrition milling resulted nanosize HAp even after milling, while the ball milling process provided HAp only after a 400oC, 2 h long heat treatment. The grain size in both cases were approximately preserved during the heat treatment. The effect of temperature on stoichiometry, morphology and crystallinity of HAp powders were investigated. The structures of the HAp were characterized by X-ray diffraction and Scanning Electron Microsopy.


2016 ◽  
Vol 16 (4) ◽  
pp. 3857-3860 ◽  
Author(s):  
Siling Guo ◽  
Chunyan Cao ◽  
Renping Cao

Through a hydrothermal method, 1 mol% Eu3+ doped NaYF4 and KYF4 micro/nanocrystals have been synthesized. The materials were characterized by X-ray diffraction (XRD) patterns, field emission scanning electron microscopy (FE-SEM) images, room temperature photoluminescence (PL) excitation and emission spectra, and luminescent dynamic decay curves. The XRD analysis suggested the crystalline structures of the obtained samples. The FE-SEM images indicated the morphology and size of the obtained samples. The PL spectra illustrate the optical properties of Eu3+ in the two samples. Since it is sensitive to the local environment of the ion, the Eu3+ presents different optical properties in the NaYF4 and KYF4 materials.


2021 ◽  
Vol 406 ◽  
pp. 219-228
Author(s):  
Ouahiba Herzallah ◽  
Hachemi Ben Temam ◽  
Asma Ababsa ◽  
Abderrahmane Gana

Ni–Co alloy coatings were electrodeposited at various cobalt amounts on pretreated steel substrates. The co-deposition phenomenon of Ni-Co alloys was described as anomalous behaviour. Different techniques including scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX), X-ray diffraction (XRD) and potentiodynamic polarization were used to characterize the alloy coatings. EDX results showed that the Co content increase with the enhancing of Co amount. SEM images have shown that the increase of Co amount leads grain developing from large grain to branched grain form and that goes through spherical and pyramidal, this implies that the grain size of these alloy coatings is greatly affected by Co amount in the electrolyte baths. XRD patterns revealed that the phase structure of Ni–Co coatings is dramatically changed from fcc into hcp structure with the increase of Co amount. The electrochemical properties of Ni-Co alloy coatings evaluated in 3.5% NaCl solution reveal that Ni–34.32 wt.% Co alloy exhibits better corrosion resistance compared to pure Ni and other Ni–Co alloy coatings.


2013 ◽  
Vol 755 ◽  
pp. 105-110 ◽  
Author(s):  
E. García de León M. ◽  
O. Téllez-Vázquez ◽  
C. Patiño-Carachure ◽  
G. Rosas

Fe40Al60 (at%) intermetallic alloy composition was obtained by conventional casting methods and subsequently subjected to high-energy mechanical milling under different conditions of humidity. All samples were characterized by X-ray diffraction patterns (XRD), transmission electron microcopy (TEM) and DSC-TGA thermogravimetric experiments. After the milling process, the amount of hydrogen generated was determined using thermogravimetric analysis and chemical reactions (stoichiometry). All techniques confirm the formation of bayerite phase which is attributed to the hydrogen embrittlement reaction between the intermetallic material and water to release hydrogen. It was observed that the hydrogen generation is increased as the ball milling time is increased. The quantity of hydrogen evaluated is similar to that obtained in previous reported experiments with pure aluminum and some of its alloys.


2013 ◽  
Vol 743 ◽  
pp. 218-222 ◽  
Author(s):  
Yue Hai Song ◽  
Li Jie Ma

An ideal anodes used for the electrochemical oxidation of organic wastewater should have excellent activity, stability and high oxygen evolution potential. In this paper the CNT (Carbon Nanotubes)-PbO2 films electrodeposited on stainless steel were prepared. X-ray diffraction (XRD) patterns and SEM images indicated that CNT particles and PbO2 were able to achieve co-deposit and the composite CNT-PbO2 films were compact. The cyclic voltammograms of the CNT-PbO2 films studied in 0.5M H2SO4 at a scan rate of 100 mV/s showed that the CNT-PbO2 film has high electrochemical stability. The results of wastewater treatment indicated that the CNT-PbO2 anodes have excellent activity in ammonia wastewater treatment.


2013 ◽  
Vol 634-638 ◽  
pp. 2261-2263
Author(s):  
Khun Ngern Supunnee ◽  
Vatcharinkorn Mekla ◽  
Eakkarach Raksasri

In this work optical properties of CuO nanostructure were studied. CuO nanostructure were synthesized by the hydrothermal treatment method. The structural and chemical natures of the obtained materials were studied using powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and study optical properties by UV-visible spectral. The XRD patterns of the CuO nanostructures indicated that CuO phases (JCPDS 05- 0661). The top-view SEM images, it can be seen clearly that high-density, horizontally scattered nanorod were grown on the product prepared at concentration of NaOH (aq) 7.5 M at 180 C for 12 h. The spectral of UV-vis data recorded showed the strong cut off at 341 nm.


2011 ◽  
Vol 672 ◽  
pp. 255-258
Author(s):  
Dana Salomie ◽  
Nicolae Jumate

The objective of this study is to improve the sintering of W powder through increasing the density of the crystalline structure imperfections. The powder of W was processed by short processes of mechanical milling in a high energy planetary mill. The paper presents the influence of mechanical milling process duration upon the modifications of the structural characteristics of W powder. The fine structure has been studied by using X-ray diffraction.


Sign in / Sign up

Export Citation Format

Share Document