Structural Optimization Design of an Aircraft Metal-Composite Wing

2013 ◽  
Vol 341-342 ◽  
pp. 519-523
Author(s):  
Ya Hui Zhang ◽  
Ji Hong Zhu ◽  
Jun Shuo Li ◽  
Wei Hong Zhang

The problem of metal-composite wing structural optimization is discussed and a strategy is presented. Topology optimization method is applied to provide load transferring path of structure for concept design. Size, shape and other optimization method are used to provide detailed design for individual components. A three-phase optimization method is discussed for fiber reinforced composite laminate skin. Optimal parameters include ply angle, percentage, thickness, layer shape and sequence. The design of laminate for ease of manufacture is based on a set of manufacturing constraints. This paper deals with a total optimal design solution for aileron structure of an aircraft. The result satisfies all the requirements of strength and stability, and has obvious effect of weight loss.

Author(s):  
Kazuhiro Izui ◽  
Kiyoshi Yokota ◽  
Takayuki Yamada ◽  
Shinji Nishiwaki ◽  
Masataka Yoshimura

This paper proposes a structural optimization-based method for the design of compliant mechanism scissors in which the proposed design criteria are based on universal design principles. The first design criterion is the distance from the hand-grip to the center of gravity of the scissors, which should be minimized to reduce the physical effort required of the people using the device. The second design criterion is that of failure tolerance, where the effects of traction applied in undesirable directions upon the performance of the compliant mechanism should be minimized. Based on the proposed design criteria, a multiobjective optimization problem for the universal design of a compliant mechanism scissors is formulated. Furthermore, to obtain an optimal configuration, a new type of topology optimization technique using the level set function to represent structural boundaries is employed. This optimization technique enables rapid verification of resulting design configurations since the boundary shapes of the obtained design solution candidates can be easily converted to finite element models which are then used in large deformation analyses. Finally, the proposed design method is applied to design examples. The optimal configurations obtained by the proposed method provide good universal design performance, indicating the effectiveness and usefulness of the proposed method.


2010 ◽  
Vol 163-167 ◽  
pp. 2304-2308
Author(s):  
Feng Guo Jiang ◽  
Zhen Qing Wang

Genetic arithmetic operators in genetic algorithm be improved , and a hybrid genetic algorithm of a gradient algorithm combining with the genetic algorithm be given against to the defects such as premature,slow on convergence rate,weak in the ability of local search ,all these appeared on the progress of genetic algorithm's iteration. Analysis result indicate that not only strong on the local search capacity of gradient algorithm be exhibited but also strong on the general search capacity of genetic algorithm be combined based on the hybrid genetic algorithm ,which make phenomenon of premature avoid, and the rate of convergence be improved greatly. Concrete calculated example indicated that the hybrid genetic algorithm is an effective structural optimization method.


2014 ◽  
Vol 889-890 ◽  
pp. 467-473
Author(s):  
Pi Yan He ◽  
Jia Yang

Topology optimization design is to ensure the normal functioning of the machine, remove the invalid element structure makes the best structure to maintain the structure and keep the stress or strain level close to the same in each part of the security configuration, the pursuit of the best efficiency, lightest weight , smallest, or the longest service life and so on. Traditional structural optimization design one or several parameters set as the primary determination. This method only to the extent required. With the development and analysis of the efficiency of the computer, we have introduced in the design of finite element analysis. This article uses the basic evolutionary structural optimization method In this paper, load the hub topology optimization analysis of different groups.


Author(s):  
Zijian Guo ◽  
Tanghong Liu ◽  
Wenhui Li ◽  
Yutao Xia

The present work focuses on the aerodynamic problems resulting from a high-speed train (HST) passing through a tunnel. Numerical simulations were employed to obtain the numerical results, and they were verified by a moving-model test. Two responses, [Formula: see text] (coefficient of the peak-to-peak pressure of a single fluctuation) and[Formula: see text] (pressure value of micro-pressure wave), were studied with regard to the three building parameters of the portal-hat buffer structure of the tunnel entrance and exit. The MOPSO (multi-objective particle swarm optimization) method was employed to solve the optimization problem in order to find the minimum [Formula: see text] and[Formula: see text]. Results showed that the effects of the three design parameters on [Formula: see text] were not monotonous, and the influences of[Formula: see text] (the oblique angle of the portal) and [Formula: see text] (the height of the hat structure) were more significant than that of[Formula: see text] (the angle between the vertical line of the portal and the hat). Monotonically decreasing responses were found in [Formula: see text] for [Formula: see text] and[Formula: see text]. The Pareto front of [Formula: see text] and[Formula: see text]was obtained. The ideal single-objective optimums for each response located at the ends of the Pareto front had values of 1.0560 for [Formula: see text] and 101.8 Pa for[Formula: see text].


2016 ◽  
Vol 8 (12) ◽  
pp. 168781401668294 ◽  
Author(s):  
Si Chen ◽  
Zhaohui Wang ◽  
Mi Lv

The mechanical properties of the steering column have a significant influence on the comfort and stability of a vehicle. In order for the mechanical properties to be improved, the rotary swaging process of the steering column is studied in this article. The process parameters, including axial feed rate, hammerhead speed, and hammerhead radial reduction, are systematically analyzed and optimized based on a multi-objective optimization design. The response surface methodology and the genetic algorithm are employed for optimal process parameters to be obtained. The maximum damage value, the maximum forming load, and the equivalent strain difference obtained with the optimal process parameters are, respectively, decreased by 30.09%, 7.44%, and 57.29% compared to the initial results. The comparative results present that the quality of the steering column is improved. The torque experiments and fatigue experiments are conducted with the optimal steering column. The maximum torque is measured to be 260 NM, and the service life is measured to be 2 weeks (40 NM, 2500 times), which are, respectively, increased by 8.3% and 8.69% compared to the initial results. The above results display that the mechanical properties of the steering column are optimized to verify the feasibility of the multi-objective optimization method.


2014 ◽  
Vol 496-500 ◽  
pp. 429-435
Author(s):  
Xiao Ping Zhong ◽  
Peng Jin

Firstly, a two-level optimization procedure for composite structure is investigated with lamination parameters as design variables and MSC.Nastran as analysis tool. The details using lamination parameters as MSC.Nastran input parameters are presented. Secondly, with a proper equivalent stiffness laminate built to substitute for the lamination parameters, a two-level optimization method based on the equivalent stiffness laminate is proposed. Compared with the lamination parameters-based method, the layer thicknesses of the equivalent stiffness laminate are adopted as continuous design variables at the first level. The corresponding lamination parameters are calculated from the optimal layer thicknesses. At the second level, genetic algorithm (GA) is applied to identify an optimal laminate configuration to target the lamination parameters obtained. The numerical example shows that the proposed method without considering constraints of lamination parameters can obtain better optimal results.


Author(s):  
Jie Zhang ◽  
Qidong Wang ◽  
Han Zhang ◽  
Min Zhang ◽  
Jianwei Lin

Abstract In this study, a systematic optimization method for the thermal management problem of passenger vehicle was proposed. This article addressed the problem of the drive shaft sheath surface temperature exceeded allowable value. Initially, the causes and initial measures of the thermal problem were studied through computational fluid dynamics (CFD) simulation. Furthermore, the key measures and the relevant parameters were determined through Taguchi method and significance analysis. A prediction model between the parameters and optimization objective was built by radial basis function neural network (RBFNN). Finally, the prediction model and particle swarm optimization (PSO) algorithm were combined to calculate the optimal solution, and the optimal solution was selected for simulation and experiment verification. Experiment results indicated that this method reduced the drive shaft sheath surface temperature promptly, the decreasing amplitude was 22%, which was met the experimental requirements.


Sign in / Sign up

Export Citation Format

Share Document