Bridges in Fire: State-of-the-Art and Research Needs

2013 ◽  
Vol 353-356 ◽  
pp. 2263-2268
Author(s):  
Yong Jun Liu ◽  
Qi Liu ◽  
Fu Chun Song

During lifetime of a bridge, it may be subjected to many hazards, in which one of the most severe hazards is fire. In recent years, due to rapid development of transportation systems, as well as increasing transport of hazardous materials, bridge fires have become a concern. Bridge fires caused by crashing of vehicles and burning of gasoline are much more severe than building fires and are characterized by a fast heating rate and a higher peak temperature which could lead to bridge collapse. Bridge failures during a fire can result in the disruption of commerce and services, and most importantly the loss of human life. This paper presents an overview of bridge fire incidents, provides a state-ofthe-art review of studies on bridges in fire, and identifies the research needs in the future for protecting critical bridge structures.

2012 ◽  
Vol 238 ◽  
pp. 684-688 ◽  
Author(s):  
Yong Jun Liu ◽  
Bo Ning ◽  
Yu Wang

Bridges are important parts of traffic systems and need to provide the necessary safety for the traveling public. Fire is one of the most severe hazards that bridges may subject to during their lifetime. In recent years, due to rapid development of transportation systems, as well as increasing transport of hazardous materials, bridge fires have become a concern. Bridge fires caused by crashing of vehicles and burning of gasoline are much more severe than building fires and are characterized by a fast heating rate and a higher peak temperature which could lead to bridge collapse. Bridge failures during a fire can result in the disruption of commerce and services, and most importantly the loss of human life. It has become necessary to consider the potential exposure of bridges to flames from oil or liquefied petroleum gas fires. In this paper, potential fire scenarios relevant for a cable-stayed bridge crossing the Yangtze River are analyzed firstly, then the temperature distribution in key elements and the global structural behavior of the bridge under tanker truck fires is calculated by using general purpose finite element analysis software ANSYS. Numerical simulation results demonstrate that cable-stayed bridge may collapse under some specific fire scenarios and it is necessary to consider fire safety in bridge design.


2012 ◽  
Vol 594-597 ◽  
pp. 2296-2300 ◽  
Author(s):  
Yong Jun Liu ◽  
Guang Yuan Wang ◽  
Yan Sheng Song

Fire is one of the most severe hazards to which bridges may be subjected during their lifetime. In recent years, due to rapid development of transportation systems, as well as increasing transport of hazardous materials, bridge fires have become a concern. Bridge fires caused by crashing of vehicles and burning of gasoline are much more severe than building fires and are characterized by a fast heating rate and a higher peak temperature which could lead to bridge collapse. Bridge failures during a fire can result in the disruption of commerce and services, and most importantly the loss of human life. In this paper, thermal and structural behavior of a steel girder of highway bridge overpass in the East Bay’s MacArthur Maze in Oakland collapsed on April 29, 2007 is studied by using general purpose finite element analysis software ABAQUS. Finite element analysis results demonstrate that unprotected steel bridge may collapse untimely under some fire scenarios and it is necessary to consider fire safety in steel bridge design.


Author(s):  
Mark Abkowitz ◽  
Eric Meyer

The development and implementation of a methodology by which evacuation planners can assess the sufficiency of their current evacuation plan, identify inadequacies, and define and evaluate potential improvement strategies are discussed. Such goals are accomplished through innovative uses of information technology and the development of a modeling environment that builds on previous work by introducing more representative and efficient algorithms. The new evacuation planning methodology is subsequently applied to a fixed facility incident scenario to demonstrate its applicability to present practice. In this context, several important conclusions are reached, illustrating the importance of having this type of decision-support tool available. Advancements made to the state of the art are assessed and further research needs in this critical and emerging field are identified.


2013 ◽  
Vol 438-439 ◽  
pp. 1879-1883
Author(s):  
Yong Jun Liu ◽  
Yao Wu ◽  
Jing Hai Zhou ◽  
Yu Wang

Recent years, many infrastructures, say building structures and bridge structures, have suffered from multi-hazards. According to official reports, 286 fires broke out due to the 2011 off the Pacific coast of Tohoku Earthquake, and fire after 1995 Kobe earthquake destroyed almost 7000 buildings. Current design codes treat earthquakes, fires and explosions as completely independent. The application of multi-hazard design is essential for improving the safety of structures, reducing building life cycle costs and increasing efficiency. In this paper, some influential multi-hazard incidents are described primarily, and the state-of-the-art and research needs on multi-hazard design are presented.


2020 ◽  
Vol 19 (11) ◽  
pp. 2116-2135
Author(s):  
G.V. Savin

Subject. The article considers functioning and development of process flows of transportation and logistics system of a smart city. Objectives. The study identifies factors and dependencies of the quality of human life on the organization and management of stream processes. Methods. I perform a comparative analysis of previous studies, taking into account the uniquely designed results, and the econometric analysis. Results. The study builds multiple regression models that are associated with stream processes, highlights interdependent indicators of temporary traffic and pollution that affect the indicator of life quality. However, the identified congestion indicator enables to predict the time spent in traffic jams per year for all participants of stream processes. Conclusions. The introduction of modern intelligent transportation systems as a component of the transportation and logistics system of a smart city does not fully solve the problems of congestion in cities at the current rate of urbanization and motorization. A viable solution is to develop cooperative and autonomous intelligent transportation systems based on the logistics approach. This will ensure control over congestion, the reduction of which will contribute to improving the life quality of people in urban areas.


2021 ◽  
Vol 11 (15) ◽  
pp. 6831
Author(s):  
Yue Chen ◽  
Jian Lu

With the rapid development of road traffic, real-time vehicle counting is very important in the construction of intelligent transportation systems (ITSs). Compared with traditional technologies, the video-based method for vehicle counting shows great importance and huge advantages in its low cost, high efficiency, and flexibility. However, many methods find difficulty in balancing the accuracy and complexity of the algorithm. For example, compared with traditional and simple methods, deep learning methods may achieve higher precision, but they also greatly increase the complexity of the algorithm. In addition to that, most of the methods only work under one mode of color, which is a waste of available information. Considering the above, a multi-loop vehicle-counting method under gray mode and RGB mode was proposed in this paper. Under gray and RGB modes, the moving vehicle can be detected more completely; with the help of multiple loops, vehicle counting could better deal with different influencing factors, such as driving behavior, traffic environment, shooting angle, etc. The experimental results show that the proposed method is able to count vehicles with more than 98.5% accuracy while dealing with different road scenes.


2021 ◽  
Vol 13 (6) ◽  
pp. 3474
Author(s):  
Guang Yu ◽  
Shuo Liu ◽  
Qiangqiang Shangguan

With the rapid development of information and communication technology, future intelligent transportation systems will exhibit a trend of cooperative driving of connected vehicles. Platooning is an important application technique for cooperative driving. Herein, optimized car-following models for platoon control based on intervehicle communication technology are proposed. On the basis of existing indicators, a series of evaluation methods for platoon safety, stability, and energy consumption is constructed. Numerical simulations are used to compare the effects of three traditional models and their optimized counterparts on the car-following process. Moreover, the influence of homogenous and heterogeneous attributes on the platoon is analyzed. The optimized model proposed in this paper can improve the stability and safety of vehicle following and reduce the total fuel consumption. The simulation results show that a homogenous platoon can enhance the overall stability of the platoon and that the desired safety margin (DSM) model is better suited for heterogeneous platoon control than the other two models. This paper provides a practical method for the design and systematic evaluation of a platoon control strategy, which is one of the key focuses in the connected and autonomous vehicle industry.


Author(s):  
Shuai Ling ◽  
Shoufeng Ma ◽  
Ning Jia

AbstractThe rapid development of economics requires highly efficient and environment-friendly urban transportation systems. Such requirement presents challenges in sustainable urban transportation. The analysis and understanding of transportation-related behaviors provide one approach to dealing with complicated transportation activities. In this study, the management of traffic systems is divided into four levels with a structural and systematic perspective. Then, several special cases from the perspective of behavior, including purchasing behaviors toward new energy vehicles, choice behaviors toward green travel, and behavioral reactions toward transportation demand management policies, are investigated. Several management suggestions are proposed for transportation authorities to improve sustainable traffic management.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1136
Author(s):  
David Augusto Ribeiro ◽  
Juan Casavílca Silva ◽  
Renata Lopes Rosa ◽  
Muhammad Saadi ◽  
Shahid Mumtaz ◽  
...  

Light field (LF) imaging has multi-view properties that help to create many applications that include auto-refocusing, depth estimation and 3D reconstruction of images, which are required particularly for intelligent transportation systems (ITSs). However, cameras can present a limited angular resolution, becoming a bottleneck in vision applications. Thus, there is a challenge to incorporate angular data due to disparities in the LF images. In recent years, different machine learning algorithms have been applied to both image processing and ITS research areas for different purposes. In this work, a Lightweight Deformable Deep Learning Framework is implemented, in which the problem of disparity into LF images is treated. To this end, an angular alignment module and a soft activation function into the Convolutional Neural Network (CNN) are implemented. For performance assessment, the proposed solution is compared with recent state-of-the-art methods using different LF datasets, each one with specific characteristics. Experimental results demonstrated that the proposed solution achieved a better performance than the other methods. The image quality results obtained outperform state-of-the-art LF image reconstruction methods. Furthermore, our model presents a lower computational complexity, decreasing the execution time.


2021 ◽  
Vol 11 (9) ◽  
pp. 4248
Author(s):  
Hong Hai Hoang ◽  
Bao Long Tran

With the rapid development of cameras and deep learning technologies, computer vision tasks such as object detection, object segmentation and object tracking are being widely applied in many fields of life. For robot grasping tasks, object segmentation aims to classify and localize objects, which helps robots to be able to pick objects accurately. The state-of-the-art instance segmentation network framework, Mask Region-Convolution Neural Network (Mask R-CNN), does not always perform an excellent accurate segmentation at the edge or border of objects. The approach using 3D camera, however, is able to extract the entire (foreground) objects easily but can be difficult or require a large amount of computation effort to classify it. We propose a novel approach, in which we combine Mask R-CNN with 3D algorithms by adding a 3D process branch for instance segmentation. Both outcomes of two branches are contemporaneously used to classify the pixels at the edge objects by dealing with the spatial relationship between edge region and mask region. We analyze the effectiveness of the method by testing with harsh cases of object positions, for example, objects are closed, overlapped or obscured by each other to focus on edge and border segmentation. Our proposed method is about 4 to 7% higher and more stable in IoU (intersection of union). This leads to a reach of 46% of mAP (mean Average Precision), which is a higher accuracy than its counterpart. The feasibility experiment shows that our method could be a remarkable promoting for the research of the grasping robot.


Sign in / Sign up

Export Citation Format

Share Document