Study and Application of Three-Step Supporting Design Method in Coal Roadway

2013 ◽  
Vol 353-356 ◽  
pp. 252-257
Author(s):  
Ren Liang Shan ◽  
Xiang Song Kong ◽  
Ji Jun Zhou ◽  
Wen Feng Zhao ◽  
Yu Tao ◽  
...  

Scientific supporting design is of great significance to ensure coal roadway stability. The three-step supporting design method is put forward for coal roadway support: The first step is preliminary design, determine the range of each supporting parameter according to the theoretical calculation and supporting experiences; the second step is numerical simulation calculation, choose the reasonable one through the comparison of schemes; the third step is field monitoring, verify the scheme applicability. After applying the three-step supporting design method to study 3# coal seam roadway in Guandi mine, the optimal supporting scheme is obtained, and good results of underground roadway are achieved, which ensure the stability of roadway surrounding rock. Meanwhile, some rules are summarized which provide references for future roadway supporting design.

2013 ◽  
Vol 734-737 ◽  
pp. 535-539
Author(s):  
Hai Yuan Liu ◽  
Zhi Gang Wang ◽  
Ji Li ◽  
Lang Bai

broken rock zone is the main reason for the convergence of surrounding rock deformation, and its thickness not only is a reflection of many factors which influence the stability of surrounding rock, but also is the results of the interaction of many factors, a comprehensive classification index. Roadway support design based on classification result of broken rock zone, has a solid theoretical foundation, and the field application effect is remarkable.


2013 ◽  
Vol 711 ◽  
pp. 385-390
Author(s):  
Hong Ying Zhang ◽  
Xue Bin Li ◽  
Zheng Xing Ma ◽  
Chao Wang ◽  
Zheng Ze Wang

Combined with engineering conditions of the III-level south roadway of Yangzhuang Mine, the deformation of surrounding rock and mechanical characteristics of support structure is analyzed by FLAC3D numerical simulation when the roadway is supported by CFSTS support program . The results shows that: For the weak mudstone surrounding rock and complex geological conditions, the deformation of surrounding rock is fast, large and unsymmetrical deformation, the bolt-net-shotcrete support is difficult to maintain the roadway stability. the CFSTS used Φ219 ×8mm steel tube filled with C50 core concrete, which provides powerful supporting force combined with other roadway support ways and restrict surrounding rock to the roadway space. By FLAC3D simulation analysis shows, the deformation of surrounding rock is small and support structure is mad good use and keep work, which can maintain the stability of roadway.


2012 ◽  
Vol 616-618 ◽  
pp. 301-305
Author(s):  
Cheng Wen Zhang ◽  
Wan Bin Yang ◽  
Hui Dong

The stability of roadway is subject to a variety of conditions, including geological conditions, and other natural factors can not be changed, it must be through supporting the roadway stability. At present the design of supporting parameters in the gateway have many methods, but there are some shortcomings. This paper used non-linear FEM to optimize the supporting parameters. The coal roadway minimum failure zone within surround rock has been set as objective function. The results show that: The support parameters and the failure zone within surround rock exist optimal relations, which can be used as a method of supporting design parameter.


2014 ◽  
Vol 716-717 ◽  
pp. 735-738 ◽  
Author(s):  
Peng Cheng ◽  
Jian Zhang ◽  
Ai Qing Liu

Aiming at the current situation of anchor bolt and cable arrangement in mine roadway support, the paper analysis the mechanical characteristics and mechanism of bolts and cables, and numerical simulation method is used to comparison and analysis of pre-tension distribution characteristics under different anchor bolt-cable arrangement. The research indicated that separate anchor bolt-cable layout in different sections, anchor bolt and cable force stable equilibrium, coordinate with each other, at this time roadway surrounding rock of shallow and deep pretension distribution more reasonable, can play a role of bolt anchor cable synergistic action, and form the best pre-tension load-bearing structure, which is helpful to keep the stability of coal roadway.


2021 ◽  
Author(s):  
jianjun SHI ◽  
Feng Jicheng ◽  
Peng Rui ◽  
Zhu Quanjie

Abstract The gob-side entry driving is driving in low pressure area, which bears less support pressure and is easy to maintain, so it is widely used. Taking the gob-side entry driving in thick coal seam of Dongtan Coal Mine as an example, the reasonable size of pillar and the section of roadway are numerically simulated by combining numerical with measurement, and the roadway support is designed. According to the distribution of lateral stress in working face, eight pillars of different sizes are designed. By simulating and comparing the stress distribution of surrounding rock and the development range and shape of plastic zone in different positions, the pillar size of gob-side entry driving is optimized to be 4.5m. According to the results of optimization of roadway section, the section of straight wall semi-circular arch roadway is adopted. According to the analysis, the roadway is supported by bolt + steel mesh + anchor cable. By observing the stability of roadway, it provides experience for the stability study of roadway the gob-side entry driving with small pillar in thick seam.


2019 ◽  
Vol 11 (10) ◽  
pp. 2758
Author(s):  
Gang Liu ◽  
Fengshan Ma ◽  
Haijun Zhao ◽  
Guang Li ◽  
Jiayuan Cao ◽  
...  

Cracks are critical for the deformation and failure of rock masses, but the effects of real cracks are rarely considered when evaluating the stability and safety of practical engineering. This paper presents a study on the application of fractures in the Sanshandao Gold Mine. Field investigation and statistical analysis methods were adopted to obtain the distribution laws of the cracks. Laboratory tests, MATLAB programming, and simulation using the software, GDEM (Gdem Technology, Beijing, China, Co., Ltd.), were employed to study the mechanical behaviors of rock masses with real fractures after excavation. The main results are as follows: (1) Three sets of highly discrete cracks were developed in the study area. Their inclination and dip can be approximately considered to follow a Gaussian distribution or uniform distribution. They had close ties to the three faults developed in the mining area. (2) Compared with the model that did not consider cracks and the model processed by the equivalence idea, the surrounding rock deformation caused by excavation of the model that considered real cracks was larger than that of the former and smaller than that of the latter. However, its influence range was larger than that of the other two models. The results show that it is reasonable to use three sets of discrete cracks to characterize the fracture distribution of the surrounding rock. In the evaluation of roadway stability, it is not advisable to use the equivalence method to deal with all the cracks. Considering a part of the cracks that are compatible with the size of the calculation model, a relatively accurate evaluation can be obtained in terms of the deformation, failure, and permeability changes of the surrounding rock.


2014 ◽  
Vol 568-570 ◽  
pp. 1684-1689
Author(s):  
Zhong Han Chen

To solve the problem of underground tunneling face from the empty top, using FLAC3D analysis software, surrounding rock stability for coal roadway 2-1121 of Ganhe Coal Mine are analyzed in numerical calculation. (1) During the tunneling, distance drivage face head-on 0.5-1m at the roof of roadway deformation and destruction features are more obvious, the two sides of roadway are even more significant. (2) Ganhe Coal Mine roof deformation has been established with different empty the experience formula of the zenith distance, obtained Ganhe underground tunneling face reasonable empty zenith distance is 3.5m. (3) Temporary support can obviously reduce roof deformation, reduce thickness of plastic zone of the top, to improve the stability of surrounding rock tunneling faces.


2014 ◽  
Vol 941-944 ◽  
pp. 2558-2564
Author(s):  
Yu Kai Lv ◽  
Cong Jiang ◽  
Yao Dong Jiang

Coal bumps happened many times in mining at No.5 seam of Tangshan coal mine. Strengthen the roadway’s support of working face can effectively reduce disaster losses. With the research background of the 3654 working face, the mine pressure monitoring for the existing support form of roadway has been carried on. Perform a numerical simulation for the original roadway support, base on the in-situ stress and physical and mechanical characteristics of surrounding rock in experimental; study the impact of the stability of roadway’s surrounding rock, while the space change of trellis and change of supporting intensity; optimizing the original support form, so as to maximum reducing the impact of the coal bumps.


2012 ◽  
Vol 446-449 ◽  
pp. 2125-2131 ◽  
Author(s):  
Qi Shu Bai ◽  
Yuan You Xia ◽  
Xin Xi Liu ◽  
Zi Han Yang

Abstract. Coal being one of the main energy resources in China. Coal industry plays an important role in the domestic economy. Roadway support is a key technology in coal mining, and the mechanical properties of surrounding rock directly affect the stability of roadways and their supporting structure. In order to solve the problem of gateway support for C8 coal seam, In terms of the rheological data got from the argillaceous siltstone samples and the influence that loading history has on rock deformation, it employs Burgers model to reflect the creep characteristics of rock. The analytical results demonstrate that the creep test curves of rock sample basically tallies with the theoretical curves and Burgers clearly describes the creep characteristics of rocks. The relationship between surrounding rock stress and surrounding rock deformation provides roadway support with reasonable evidence.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Kai Wang ◽  
Bao-gui Yang ◽  
Zhong-kui Wang ◽  
Xiao-long Wang

In order to meet the security and high-efficiency production needs, high-strength bolt (cable) reinforcement technology is usually used to maintain the stability of roadways. However, due to the great variability of lithology and mechanical properties, the failure form and stability of the layered roof in coal roadways are significant differences. The traditional supporting design method of the layered roof support in coal roadways is the engineering analogy method, which depends on experiences rather than theoretical analysis. Based on the theory of the elastic foundation beam and key stratum, this paper establishes a simplified analytical model of layered roof strata in coal roadways. Based on the Mohr-Coulomb theory, this paper gives the failure criteria of the layered roof strata, and the failure range of the layered roof strata is obtained. The length and pretightening force of bolt (cables) of the layered roof strata can be calculated based on the suspension theory and composite beam theory, which providing a quantitative theoretical basis for the determination of supporting parameters. Finally, as a case, the layered roof strata failure range and supporting parameters of the S1301 auxiliary transportation roadway in Gucheng coal mine are calculated.


Sign in / Sign up

Export Citation Format

Share Document