Composite Wing Flutter Speed and Frequency due to Variable Control Surface Deflection in Low Speed Wind Tunnel

2013 ◽  
Vol 390 ◽  
pp. 3-7
Author(s):  
Muhammad Iyas Mahzan ◽  
Sallehuddin Muhamad ◽  
Sa’ardin Abdul Aziz ◽  
Mohamed Sukri Mat Ali

Flutter is a dynamic instability problem represents the interaction among structural, aerodynamic, elastic and inertial forces and occurred when the energy is continuously transformed by the surrounding fluids to a flying structure in the form of kinetic energy. The study was conducted to investigate the relationship of the control surface deflection angle to the flutter speed and the flutter frequency. A wind tunnel test was performed using a flat plate wing made of composite material. It was found that by deflecting the control surface up to 45°, the flutter speed reduced almost linearly from 35.6 m/s to 22.7 m/s. The flutter frequency greatly reduced from 48 Hz without the control surface deflected to 34 Hz with the control surface deflected at 15°. After 15° deflection up to 45°, the flutter frequency reduced almost linearly.

2013 ◽  
Vol 315 ◽  
pp. 359-363 ◽  
Author(s):  
Mahzan Muhammad Iyas ◽  
Muhamad Sallehuddin ◽  
Mat Ali Mohamed Sukri ◽  
Mansor Mohd Shuhaimi

Flutter is a dynamic instability problem represents the interaction among aerodynamic forces and structural stiffness during flight. The study was conducted to investigate whether deflecting the control surface will affect the flutter speed and the flutter frequency. A wind tunnel test was performed using a flat plate wing made of composite material. It was found that by deflecting the control surface at 45°, the wing entered flutter state at wind speed of 28.1 m/s instead of 33.4 m/s. In addition, the flutter frequency also reduced from 224.52 Hz to 198.96 Hz. It was concluded that by deflecting the control surface, the wing experienced flutter at lower speed and frequency.


WARTA ARDHIA ◽  
2017 ◽  
Vol 42 (4) ◽  
pp. 165
Author(s):  
Sayuti Syamsuar ◽  
Muhamad Kusni ◽  
Adityo Suksmono ◽  
Muhamad Ivan Aji Saputro

Fenomena flutter akan terjadi apabila ada gaya dan momen aerodinamika yang berinteraksi berlebihan di permukaan sayap di dalam terowongan angin atau pesawat sesungguhnya. Sayap akan bergetar dan berosilasi bertambah besar menuju ke keadaan tidak stabil. Osilasi osilasi membuat osilasi yang lebih besar terjadi sehingga frekuensi dan damping pada daerah kecepatan tertentu dengan mudah terlihat apabila terjadi flutter pada model separuh sayap. Penelitian ini, digunakan model separuh sayap dari pesawat N219 yang di uji pada terowongan angin kecepatan rendah BBTA3, kawasan Puspiptek, Serpong. Kecepatan flutter terjadi pada 40,5 m/s pada hasil analisis komputasional dan hasil pengujian di terowongan angin sebesar 40,83 m/s. [The Analysis of Half Wing Flutter Test N219 Aircraft Model in The Low Speed Wind Tunnel] The flutter phenomenon will occur when the aerodynamic force and moment excessively interacted on the wing surface, whether it takes place in the wind tunnel or on the real aircraft. The wing will vibrate and oscillate towards an unstable condition. Each oscillation will subsequently build a greater one until the damping and frequency on a certain speed range can be seen easily when flutter occur on the half wing model. On this research, the half wing model of N219 aircraft was tested in the low speed wind tunnel of BBTA3, Puspitek Serpong. The flutter speed occurred at 40,5 m/s based on computational analysis while the wind tunnel result is at the speed of 40,83 m/s.


Fluids ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 34
Author(s):  
Pengtao Shi ◽  
Jihai Liu ◽  
Yingsong Gu ◽  
Zhichun Yang ◽  
Pier Marzocca

Aiming at the experimental test of the body freedom flutter for modern high aspect ratio flexible flying wing, this paper conducts a body freedom flutter wind tunnel test on a full-span flying wing flutter model. The research content is summarized as follows: (1) The full-span finite element model and aeroelastic model of an unmanned aerial vehicle for body freedom flutter wind tunnel test are established, and the structural dynamics and flutter characteristics of this vehicle are obtained through theoretical analysis. (2) Based on the preliminary theoretical analysis results, the design and manufacturing of this vehicle are completed, and the structural dynamic characteristics of the vehicle are identified through ground vibration test. Finally, the theoretical analysis model is updated and the corresponding flutter characteristics are obtained. (3) A novel quasi-free flying suspension system capable of releasing pitch, plunge and yaw degrees of freedom is designed and implemented in the wind tunnel flutter test. The influence of the nose mass balance on the flutter results is explored. The study shows that: (1) The test vehicle can exhibit body freedom flutter at low airspeeds, and the obtained flutter speed and damping characteristics are favorable for conducting the body freedom flutter wind tunnel test. (2) The designed suspension system can effectively release the degrees of freedom of pitch, plunge, and yaw. The flutter speed measured in the wind tunnel test is 9.72 m/s, and the flutter frequency is 2.18 Hz, which agree well with the theoretical results (with flutter speed of 9.49 m/s and flutter frequency of 2.03 Hz). (3) With the increasing of the mass balance at the nose, critical speed of body freedom flutter rises up and the flutter frequency gradually decreases, which also agree well with corresponding theoretical results.


2020 ◽  
Vol 145 ◽  
pp. 02019
Author(s):  
Ningning Hong ◽  
Shitao Peng ◽  
Hongxin Zhao ◽  
Ning Su

With the increasing requirements of environmental protection, a large number of new wet dust suppression technologies are used in the port in recent years, such as watering at the bottom of the Dumper Shed, etc. So the moisture content of coal is more than 10% often appear. Relevant studies show that the amount of dust from coal (conventional moisture content) pile is directly proportional to the high power of wind speed. But studies on high moisture content coal are rare. In this study, Wind tunnel test was carried out to study the dust emission behavior of coal with high moisture content (13.7% and 14.3%). The results show that the relationship between coal dust and wind speed tends to be linear under high moisture content. The study can provide a basis research for the estimation of coal dust emission in port.


Author(s):  
K. C. Amuedo ◽  
B. R. Williams ◽  
J. D. Flood ◽  
A. L. Johns

A comprehensive wind tunnel test program was conducted to evaluate control of Hot Gas Ingestion (HGI) on a 9.2% scale model of the McDonnell Aircraft Company model 279-3C advanced Short Takeoff and Vertical Landing (STOVL) configuration. The test was conducted in the NASA-Lewis Research Center 9 foot by 15 foot Low Speed Wind Tunnel during the summer of 1987. Initial tests defined baseline HGI levels as determined by engine face temperature rise and temperature distortion. Subsequent testing was conducted to parametrically evaluate HGI control using: Lift Improvement Devices (LIDs), forward nozzle splay angle, combination of LIDs and forward nozzle splay angle, and main inlet blocking. The results from this test program demonstrate that HGI can be effectively controlled and that HGI is not a barrier to STOVL aircraft development.


2020 ◽  
Author(s):  
Seiki Chiba ◽  
Mikio Waki

Dielectric elastomers (DEs) are lightweight and high-power, making them ideal for power control in a planetary exploration spacecraft. In this chapter, we will discuss the control of an exploration airplane exploring the surface of Mars using DEs. This airplane requires lightweight and powerful actuators to fly in the rare Martian atmosphere. DEs are a possible candidate for use as actuator controlling the airplane since they have high power, and high efficiency. A structural model of a wing having a control surface, a DE, and a linkage was built and a wind tunnel test of a control surface actuation using a DE actuator was carried out.


Author(s):  
Vani Sadadiwala

This work reflects the study and detailed analysis of NACA 0012 airfoil at different angles of attack with a constant value of Reynolds Number. The geometrical designing of the airfoil is done using FreeCad and the computational analysis is carried out using Simflow 4.0- OpenFoam Interface. The analysis is fully based upon the concepts of FEM and CFD. The velocity is kept constant with various angles of attack. CFD methods are reliable source of analysis and hence can be replaced with the experimental wind tunnel methods. Boundary layer approaches were taken into consideration using the meshing techniques. The main purpose of this work is to study the symmetric profile of NACA 0012 with varying angles and the behaviour of 0012 at specific conditions. At the end, various graphs are plotted depicting the relationship of Angle of Attack with other dimensionless quantities.


WARTA ARDHIA ◽  
2017 ◽  
Vol 42 (3) ◽  
pp. 123
Author(s):  
Sayuti Syamsuar ◽  
Leonardo Gunawan ◽  
Martina Widiramdhani ◽  
Nina Kartika

Fenomena flutter merupakan salah satu fenomena yang kritis dan dapat membahayakan pesawat. Ketika, pesawat terbang semakin cepat dan mencapai kecepatan flutter, maka akan terjadi ketidakstabilan struktur. Oleh sebab itu, untuk menjamin keselamatan Pilot saat uji terbang, perlu dilakukan analisis awal pada kecepatan flutter. Uji terowongan angin selalu dilakukan untuk memvalidasi hasil dari analisis numerikal. Penelitian ini meliputi analisis program NASTRAN pada model separuh sayap pesawat N219 saat uji getaran di tanah. Prediksi kecepatan flutter secara analisis hampir sama dengan hasil uji terowongan angin. Parameter modus struktur yang ditemukan, seperti frekuensi natural, modus getar dan rasio redaman, dapat digunakan untuk analisis parameter flutter sebagai metoda analisis baru. [The Design and Experiment of Ground Vibration Test of N219 Aircraft Half Wing Model] Flutter phenomena is a critical phenomenon that can be dangerous for aircraft. When an aircraft fly faster until reach flutter speed, the structure will become unstable. Therefore, it is important to conduct preliminary analysis of flutter speed to ensure the safety of Pilot. Wind tunnel test is necessary to be conducted to validate numerical analysis results. This research consist of NASTRAN software analysis of half wing model of N219 aircraft for ground vibration test. The prediction of flutter speed which is obtained from software analysis is similar with the wind tunnel test result. It is found that the modus parameter of structure like natural frequency, modus of vibration and damping ratio can be used on the parameter analysis as a new analysis method.


2016 ◽  
Vol 23 (4) ◽  
pp. 471-478
Author(s):  
Kamil Smędra ◽  
Rafał Świerkot ◽  
Krzysztof Kubryński

Sign in / Sign up

Export Citation Format

Share Document