Experimental Model to Optimize the Design of Cylindrical Heat Pipes for Solar Collector Application

2013 ◽  
Vol 393 ◽  
pp. 735-740
Author(s):  
Fairosidi Idrus ◽  
Nazri Mohamad ◽  
Ramlan Zailani ◽  
Wisnoe Wirachman ◽  
Mohd Zulkifly Abdullah

A heat pipe is a heat-transfer device that use the principles of thermal conductivity and phase change to transfer heat between two ends at almost constant temperature. The thermal peformance of cylindrical heat pipes depends on design parameters such as dimensions of the heat pipe, material, wick structure and the working fluid. An experimental strategy was designed to study the effect of these parameters on the thermal performance of cylindrical heat pipes. The experimental design was conceived by employing the Taguchi method. The final aim of the experiments is to come up with design parameters that will yield optimum thermal performance. This paper presents an efficient design of experiment and the associated experimental setup and procedures to be carried out in order to optimize the design of cylindrical heat pipes.

Author(s):  
Mehdi Taslimifar ◽  
Maziar Mohammadi ◽  
Ali Adibnia ◽  
Hossein Afshin ◽  
Mohammad Hassan Saidi ◽  
...  

Homogenous dispersing of nanoparticles in a base fluid is an excellent way to increase the thermal performance of heat transfer devices especially Heat Pipes (HPs). As a wickless, cheap and efficient heat pipe, Pulsating Heat Pipes (PHPs) are important candidates for thermal application considerations. In the present research an Open Loop Pulsating Heat Pipe (OLPHP) is fabricated and tested experimentally. The effects of working fluid namely, water, Silica Coated ferrofluid (SC ferrofluid), and ferrofluid without surface coating of nanoparticles (ferrofluid), charging ratio, heat input, and application of magnetic field on the overall thermal performance of the OLPHPs are investigated. Experimental results show that ferrofluid has better heat transport capability relative to SC ferrofluid. Furthermore, application of magnetic field improves the heat transfer performance of OLPHPs charged with both ferrofluids.


2015 ◽  
Vol 789-790 ◽  
pp. 422-425
Author(s):  
Fun Liang Chang ◽  
Yew Mun Hung

Micro heat pipe is a two-phase heat transfer device offering effective high heat-flux removal in electronics cooling. Essentially, micro heat pipe relies on the phase change processes, namely evaporation and condensation, and the circulation of working fluid to function as heat transfer equipment. The vast applications of micro heat pipe in portable appliances necessitate its functionality under different orientations with respect to gravity. Therefore, its thermal performance is strongly related to its orientation. By incorporating solid wall conduction, together with the continuity, momentum, and energy equations of the working fluid, a mathematical model is developed to investigate the heat and fluid flow characteristics of inclined micro heat pipes. We investigate both the favorable and adverse effects of gravity on the circulation rate which is intimately related to the thermal performance of micro heat pipes. The effects of gravity, through the angle of inclination, on the circulation strength and heat transport capacity are analysed. This study serves as a useful analytical tool in the micro heat pipe design and performance analysis, associated with different inclinations and operating conditions.


2000 ◽  
Vol 123 (1) ◽  
pp. 120-129 ◽  
Author(s):  
R. Michael Castle ◽  
Scott K. Thomas ◽  
Kirk L. Yerkes

The results of a recently completed experimental and analytical study showed that the capillary limit of a helically-grooved heat pipe (HGHP) was increased significantly when the transverse body force field was increased. This was due to the geometry of the helical groove wick structure. The objective of the present research was to experimentally determine the performance of revolving helically-grooved heat pipes when the working fluid inventory was varied. This report describes the measurement of the geometry of the heat pipe wick structure and the construction and testing of a heat pipe filling station. In addition, an extensive analysis of the uncertainty involved in the filling procedure and working fluid inventory has been outlined. Experimental measurements include the maximum heat transport, thermal resistance and evaporative heat transfer coefficient of the revolving helically grooved heat pipe for radial accelerations of |a⃗r|=0.0, 2.0, 4.0, 6.0, 8.0, and 10.0-g and working fluid fills of G=0.5, 1.0, and 1.5. An existing capillary limit model was updated and comparisons were made to the present experimental data.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Kamlesh K. Mehta ◽  
Nirvesh Mehta ◽  
Vivek Patel

Abstract Flat plate oscillating heat pipe (FP-OHP) is a unique heat transfer device and considered as a promising candidate for effective heat transfer device in electronics industries. A number of theoretical studies and experimental investigations have been carried out on FP-OHP in the past decades after its invention. However, due to the operational characteristics of FP-OHP, the effect of various parameters on the thermal performance of FP-OHP has not been completely revealed so far. This paper attempts to discuss the effect of operational parameters on the thermal performance of FP-OHP. In this study, the FP-OHP was investigated with different charge ratios, orientations, working fluids, and heat loads from 10 W to 150 W. In order to investigate the effect, 18 parallel square channels of 2 × 2 mm2 are machined onto pure copper plate (93 × 70 × 8 mm3) to form FP-OHP. DI water, ethanol, methanol, acetone, and FC-72 are investigated. The measured thermal resistance was strongly dependent on operational parameters. The optimum performance was observed with acetone with a charge ratio of 70% in the vertical orientation. The lowest thermal resistance of 0.39 °C/W is achieved using acetone as a working fluid at 100 W. A Kutateladze number (Ku) was used to compare the experimental data and found to be suitable for prediction of the thermal performance of FP-OHP with standard deviation of 15%.


2015 ◽  
Vol 60 (2) ◽  
pp. 1463-1466
Author(s):  
K.S. Kim ◽  
J.Y. Kim

Abstract Heat pipes have been recently in use for cooling purposes in various fields, including electronic circuit boards and vehicle parts that generate large amounts of heat. In order to minimize the loss of heat transferred, there is a need to maximize the contact area of the working fluid. This study produced a square tube multi-channel heat pipe to replace the existing circular pipe type to maximize the internal surface area thereof. This expands the surface, allowing the working fluid to come into contact with a wider area and enhancing thermal radiation performance. A mold for the production for such a product was designed, and finite element simulation was performed to determine whether production is possible.


Author(s):  
Changsong Ding ◽  
Gaurav Soni ◽  
Payam Bozorgi ◽  
Brian Piorek ◽  
Carl D. Meinhart ◽  
...  

We are developing innovative heat pipes based on Nano-Structured Titania (NST) with a potential for high heat carrying capacity and high thermal conductivity. These heat pipes have a flat geometry as opposed to a cylindrical geometry found in conventional heat pipes. The flatness will enable a good contact with microprocessor chips and thus reduce the thermal contact resistance. We refer to it as a Thermal Ground Plane (TGP) because of its flat and thin geometry. It will provide the ability to cool the future generations of power intensive microprocessor chips and circuit boards in an efficient way. It also brings the potential to function in high temperature (>150°C) fields because of its high yield strength and compatibility [1]. The TGP is fabricated with Titanium. It adopts the recently developed high aspect ratio Ti processing techniques [2] and laser packaging techniques. The three main components of the TGP are 1) a fine wick structure based on arrays of high aspect ratio Ti pillars and hair like structures of Nano-Structured Titania (NST), 2) A shallow Ti cavity welded onto the wick structure and 3) the working fluid, water, sealed between the cavity and the wick. The heat carrying capacity and the thermal conductivity of a heat pipe are generally determined by the speed of capillary flow of the working fluid through its wick. The TGP wick has the potential to generate high flow rates and to meet the growing challenges faced by electronics cooling community. The TGP wick structure, developed by etching high aspect ratio pillars in a titanium substrate and growing nano scale hairs on the surface of the pillars, is super hydrophilic and capable of wicking water at velocities ∼ 10−2 m/s over distances of several centimeters. The thermal conductivity of the current TGP device was measured to be k = 350 W/m·K. The completed TGP device has the potential of attaining a higher conductivity by improving the wicking material and of carrying higher power density. Washburn equation [3] for dynamics of capillary flow has been employed to explain the results of our experiments. The experiment shows a good agreement with Washburn equation.


Volume 3 ◽  
2004 ◽  
Author(s):  
T. A. Jankowski ◽  
J. A. Waynert ◽  
F. C. Prenger ◽  
A. Razani

A steady state heat pipe model, capable of calculating temperature and pressure distributions in the working fluid of a rotating heat pipe, is described here. The model can predict the performance of rotating heat pipes with a round cross-section, containing an annular gap composite wick structure. In addition to straight heat pipes, with a longitudinal axis that may or may not coincide with the axis of rotation, the model also allows for simulation of bent heat pipes. Using this model, results are generated for a bent heat pipe proposed for use in cooling rotating machinery. For the bent heat pipe, the condenser and adiabatic sections coincide with the axis of rotation, while the evaporator consists of an off-axis eccentrically rotating component, and a bend that allows for portion of the evaporator to be nearly perpendicular to the axis of rotation. The presence of the composite wick allows for heat pipe operation in both the rotating and stationary operating modes. Model results for the stationary operating mode compare favorably to the steady state heat pipe analysis code HTPIPE [1]. These comparisons for the stationary operating limit are significant, since HTPIPE has been benchmarked against experimental heat pipe data for nearly 30 years. As the rotational speed is increased, the rotation induced forces are used to drive the liquid flow to the evaporator. At high rotation rates, the liquid recedes from the wick, and forms a thin layer against the inside wall of the heat pipe. The results show that when a stable liquid layer is formed against the wall of the pipe, the shear stress opposes the rotation induced forces acting on the liquid, and limits the magnitude of the pressure and temperature rises in the working fluid (from the values predicted using a hydrostatic approximation).


2005 ◽  
Author(s):  
John D. Bernardin

Increases in the power density of electronics and the corresponding decreases in packaging space have driven the development and enhancement of numerous electronics cooling strategies. The design of cooling systems for electronics are particularly challenging in spacecraft environments where there exists the additional requirements of minimal mass and volume, high reliability, reduced complexity and number of moving parts, and ability to operate in a reduced or gravity-free environment. One cooling technique that has proven to satisfy these demanding and integrated requirements for spacecraft electronics cooling applications, involves the use of heat pipes. The heat pipe is a passive heat transport device that requires no moving parts, is highly compact and reliable, and is an efficient mover of thermal energy in reduced gravity environments. Despite all of these positive features, heat pipes do have limitations and functional characteristics that designers must be keenly aware of when incorporating them into the development of electronic cooling systems. These include, in part, limits on the heat transport capacity and operational temperature, as well as performance variations between seemingly identical heat pipes due to contamination or manufacturing flaws. This paper discusses thermal analyses and performance testing of commercial copper heat pipes that utilize a sintered copper wick with either methanol or water as the working fluid. First, the electronic cooling application, thermal operating requirements, and commercial heat pipe designs are introduced. Next, the models and analyses used to predict the heat transport limits for the heat pipes are discussed. Following this, the experimental apparatus and procedures used to characterize the thermal performance of the heat pipes are presented. Finally, with the aid of empirical data, assessments of the thermal performance of each heat pipe, the range of performance variation between heat pipes, as well as the applicability and accuracy of the analytical performance models are provided.


Jurnal METTEK ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 52
Author(s):  
David Febraldo ◽  
Wayan Nata Septiadi ◽  
Ketut Astawa

Pipa kalor (Heat pipe) merupakan salah satu teknologi penukar kalor dua fase sistem pasif, pipa kalor itu sendiri memiliki struktur dengan konduktivitas termal tinggi, hal ini memungkinkan transportasi panas dengan mempertahankan perbedaan suhu sehingga seragam di sepanjang bagian yang dipanaskan dan didinginkan. Kinerja termal pipa kalor dapat ditentukan dari nilai hambatan panas. Ketika hambatan panas bernilai kecil, maka laju perpindahan kalor meningkat begitu pula sebaliknya. Pengujian kinerja termal  pipa kalor tembaga pada fluida kerja air telah dilakukan. Kinerja termal dapat diamati dari hasil pengambilan data temperatur dan pengolahan data. Hasil dari penelitian ini menunjukkan perbedaan temperatur antara temperatur pemanas dan dan temperatur fluida terus meningkat dengan kenaikan laju perpindahan panas dari variasi beban pemanasan 70 volt, 90 volt, 110 vot, 130 volt, dan 150 volt. Heat pipe is a passive two-phase heat exchanger technology, heat pipe itself has a structure with high thermal conductivity, this allows heat transportation by maintaining a uniform temperature difference along the heated and cooled part. Thermal performance of heat pipes can be determined from the value of heat resistance. When heat resistance is small, the heat transfer rate increases and vice versa. Testing the thermal performance of copper heat pipes on the working fluid of water has been carried out. Thermal performance can be observed from the results of temperature data collection and data processing. The results of this study indicate the temperature difference between heating temperature and fluid temperature continues to increase with increasing heat transfer rates from variations in heating loads of 70 volts, 90 volts, 110 vot, 130 volts, and 150 volts.


Author(s):  
Tien-Chien Jen ◽  
Yau Min Chen ◽  
Fern Tuchowski

It’s widely known that hole making is, by a significant margin, the most frequently performed process among metalworking operations. It’s also among the most difficult operations to control from a thermal perspective. The most common cooling method is the use of cutting fluids flooding through the cutting zone. However, disposal of the used fluids is subject to federal, state and local laws and regulations. More stringent regulations in environmental pollution are expected in the future, we can expect the cost associated with coolants to continue to rise. Experimental studies implementing the use of a heat pipe to cool the drill and thus reduce the amount of cutting fluid required have been recently conducted. The heat pipe works with no moving parts or electronics and it also offers an effective alternative to removing heat without significant increases in operating temperatures. The operating mechanism of heat pipes have been extensively studied, however, rotating heat pipes with a wick structure has not received adequate attention in the past. In this study, a numerical analysis has been conducted to model the flow in an axially rotating heat pipe. The result shows the transport capacity is strongly affected by changes in the thermal physical properties of the working fluid with the temperature. The rotating speeds have strong effect in the vapor core but this effect is weak in the liquid flow of the wick structure.


Sign in / Sign up

Export Citation Format

Share Document