Design of LED Light Source for Uniform Illumination in Large Area

2013 ◽  
Vol 401-403 ◽  
pp. 465-468
Author(s):  
Jie Sun ◽  
Jing Wen Zhang

Based on the observation of the data measured, the illumination distribution of single LED is set to follow Gaussian function, and with this hypothesis, two forms of light array are analyzed on their illumination distribution. The law of Spyro is used to optimize space between LED in array. Comparison and analysis of the two kinds of array arrangement are given for getting the uniform illumination. The general design method and the calculation example of LED array to produce uniform illumination are also given in this paper. Keywords: Plane light source, Gauss function fitting, LED light source, Uniform illumination

Lab on a Chip ◽  
2015 ◽  
Vol 15 (1) ◽  
pp. 57-61 ◽  
Author(s):  
M. Erickstad ◽  
E. Gutierrez ◽  
A. Groisman

An LED-based UV-light source producing collimated uniform illumination over a large area is built and used to fabricate PDMS microchannels with near-rectangular profiles and depths up to 300 μm.


2018 ◽  
Vol 51 (3) ◽  
pp. 447-456 ◽  
Author(s):  
R Hao ◽  
A Ge ◽  
X Tao ◽  
Y Liu ◽  
B Zhao ◽  
...  

Light-emitting diodes (LEDs) have been widely used in road lighting. This study investigates the optical design of a high-mast luminaire based on four chips-on-board LED light source modules and applies it to road lighting. The model of the high-mast luminaire is built with Solidworks, and then the optical simulations are analysed by Tracepro and Dialux. We also make a physical prototype of the high-mast luminaire to test its performance in practice. The illuminance distribution of the test area is nearly rectangular. The interior of the rectangle forms a smaller highlighted rectangular illumination area with uniform illumination. The outer edges of the rectangular illumination area will overlap the outer edges of the illumination area of other high-mast luminaires. The desired illuminance distribution and the uniform illumination can be obtained. Both the simulations and the experimental results meet the requirements of road lighting standards and the high-mast lamp can even achieve a better optical performance.


2021 ◽  
Vol 11 (9) ◽  
pp. 4035
Author(s):  
Jinsheon Kim ◽  
Jeungmo Kang ◽  
Woojin Jang

In the case of light-emitting diode (LED) seaport luminaires, they should be designed in consideration of glare, average illuminance, and overall uniformity. Although it is possible to implement light distribution through auxiliary devices such as reflectors, it means increasing the weight and size of the luminaire, which reduces the feasibility. Considering the special environment of seaport luminaires, which are installed at a height of 30 m or more, it is necessary to reduce the weight of the device, facilitate replacement, and secure a light source with a long life. In this paper, an optimized lens design was investigated to provide uniform light distribution to meet the requirement in the seaport lighting application. Four types of lens were designed and fabricated to verify the uniform light distribution requirement for the seaport lighting application. Using numerical analysis, we optimized the lens that provides the required minimum overall uniformity for the seaport lighting application. A theoretical analysis for the heatsink structure and shape were conducted to reduce the heat from the high-power LED light sources up to 250 W. As a result of these analyses on the heat dissipation characteristics of the high-power LED light source used in the LED seaport luminaire, the heatsink with hexagonal-shape fins shows the best heat dissipation effect. Finally, a prototype LED seaport luminaire with an optimized lens and heat sink was fabricated and tested in a real seaport environment. The light distribution characteristics of this prototype LED seaport luminaire were compared with a commercial high-pressure sodium luminaire and metal halide luminaire.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Mary K. Popp ◽  
Imane Oubou ◽  
Colin Shepherd ◽  
Zachary Nager ◽  
Courtney Anderson ◽  
...  

Photothermal therapy (PTT) treatments have shown strong potential in treating tumors through their ability to target destructive heat preferentially to tumor regions. In this paper we demonstrate that PTT in a murine melanoma model using gold nanorods (GNRs) and near-infrared (NIR) light decreases tumor volume and increases animal survival to an extent that is comparable to the current generation of melanoma drugs. GNRs, in particular, have shown a strong ability to reach ablative temperatures quickly in tumors when exposed to NIR light. The current research tests the efficacy of GNRs PTT in a difficult and fast growing murine melanoma model using a NIR light-emitting diode (LED) light source. LED light sources in the NIR spectrum could provide a safer and more practical approach to photothermal therapy than lasers. We also show that the LED light source can effectively and quickly heatin vitroandin vivomodels to ablative temperatures when combined with GNRs. We anticipate that this approach could have significant implications for human cancer therapy.


2022 ◽  
Vol 54 (2) ◽  
Author(s):  
Rongrong Zhang ◽  
Zuojie Wen ◽  
Bingqian Li ◽  
Shenghua Liang ◽  
Mingde Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document