Intelligent Navigation of Assembly Stations Based on Real-Time Manufacturing Information

2013 ◽  
Vol 432 ◽  
pp. 442-446
Author(s):  
Teng Yang ◽  
Ying Feng Zhang ◽  
Jun Qiang Wang

In order to improve the real-time control and optimization of assembly process, this article takes the basic execution unitassembly station as the study subject. Based on real-time manufacturing information, the concept of the intelligent navigation of assembly activities is put forward. Through the application of RFID technology to capture the multi-source information, three kinds of navigation services, namely real-time assembly operating guidance service, collaborative manufacturing service among assembly stations and real-time optimization service of task queue, are designed to implement optimal navigation. The presented concept and services will facilitate the real-time data driven process monitor and control between the assembly line and assembly station.

Author(s):  
Nachiket Kulkarni ◽  
S. V. N. L. Lalitha ◽  
Sanjay A. Deokar

The use of grid power systems based on the combinations of various electrical networks, information technology, and communication layers called as Smart Grid systems. The technique of smart grid suppressed the problems faced by conventional grid systems such as inefficient energy management, improper control actions, grid faults, human errors, etc. The recent research on smart grid provides the approach for the real-time control and monitoring of grid power systems based on bidirectional communications. However, the smart grid is yet to improve regarding efficiency, energy management, reliability, and cost-effectiveness by considering its real-time implementation. In this paper, we present the real-time design of efficient monitoring and control of grid power system using the remote cloud server. We utilized the remote cloud server to fetch, monitor and control the real-time power system data to improve the universal control and response time. The proper hardware panel designed and fabricated to establish the connection with the grid as well as remote cloud users. The authenticated cloud users are provisioned to access and control the grid power system from anywhere securely. For the user authentication, we proposed the novel approach to secure the complete smart grid system. Finally, we demonstrated the effectiveness of real-time monitoring and control of the grid power method with the use of structure of practical framework.


Author(s):  
David G. Fenstermacher ◽  
K. Krishnamurthy ◽  
Robert G. Landers ◽  
Jigar D. Patel

This paper describes an Electro-Hydraulics Laboratory (EH Lab) at the University of Missouri - Rolla (UMR), which was recently established with a gift from Caterpillar Inc. The goal of this laboratory is to provide students the opportunity for hands-on experience with signal processing, dynamic modeling, and real-time control of industrial-grade electro-hydraulic systems. Unlike most comparable educational laboratories, nearly all of the components used in this laboratory were originally intended for industrial use, yielding a much more real-world experience for students. The laboratory utilizes the xPC Target software for rapid prototyping and execution of real-time data acquisition and control systems using Simulink. Several laboratories, as well as a course project, that utilize the EH Lab are presented.


Author(s):  
Vladimir V. NEKRASOV

Developing a microcontroller-based system for controlling the flywheel motor of high-dynamics spacecraft using Russian-made parts and components made it possible to make statement of the problem of searching control function for a preset rotation rate of the flywheel rotor. This paper discusses one of the possible options for mathematical study of the stated problem, namely, application of structural analysis based on graph theory. Within the framework of the stated problem a graph was constructed for generating the new required rate, while in order to consider the stochastic case option the incidence and adjacency matrices were constructed. The stated problem was solved using a power matrix which transforms a set of contiguous matrices of the graph of admissible solution edge sequences, the real-time control function was found. Based on the results of this work, operational trials were run for the developed control function of the flywheel motor rotor rotation rate, a math model was constructed for the real-time control function, and conclusions were drawn about the feasibility of implementing the results of this study. Key words: Control function, graph, incidence matrix, adjacency matrix, power matrix, microcontroller control of the flywheel motor, highly dynamic spacecraft.


Author(s):  
Hamid Khakpour Nejadkhaki ◽  
John F. Hall ◽  
Minghui Zheng ◽  
Teng Wu

A platform for the engineering design, performance, and control of an adaptive wind turbine blade is presented. This environment includes a simulation model, integrative design tool, and control framework. The authors are currently developing a novel blade with an adaptive twist angle distribution (TAD). The TAD influences the aerodynamic loads and thus, system dynamics. The modeling platform facilitates the use of an integrative design tool that establishes the TAD in relation to wind speed. The outcome of this design enables the transformation of the TAD during operation. Still, a robust control method is required to realize the benefits of the adaptive TAD. Moreover, simulation of the TAD is computationally expensive. It also requires a unique approach for both partial and full-load operation. A framework is currently being developed to relate the TAD to the wind turbine and its components. Understanding the relationship between the TAD and the dynamic system is crucial in the establishment of real-time control. This capability is necessary to improve wind capture and reduce system loads. In the current state of development, the platform is capable of maximizing wind capture during partial-load operation. However, the control tasks related to Region 3 and load mitigation are more complex. Our framework will require high-fidelity modeling and reduced-order models that support real-time control. The paper outlines the components of this framework that is being developed. The proposed platform will facilitate expansion and the use of these required modeling techniques. A case study of a 20 kW system is presented based upon the partial-load operation. The study demonstrates how the platform is used to design and control the blade. A low-dimensional aerodynamic model characterizes the blade performance. This interacts with the simulation model to predict the power production. The design tool establishes actuator locations and stiffness properties required for the blade shape to achieve a range of TAD configurations. A supervisory control model is implemented and used to demonstrate how the simulation model blade performs in the case study.


2020 ◽  
Author(s):  
Krzysztof Blachut ◽  
Hubert Szolc ◽  
Mateusz Wasala ◽  
Tomasz Kryjak ◽  
Marek Gorgon

In this paper we present a vision based hardware-software control system enabling autonomous landing of a mul-tirotor unmanned aerial vehicle (UAV). It allows the detection of a marked landing pad in real-time for a 1280 x 720 @ 60 fps video stream. In addition, a LiDAR sensor is used to measure the altitude above ground. A heterogeneous Zynq SoC device is used as the computing platform. The solution was tested on a number of sequences and the landing pad was detected with 96% accuracy. This research shows that a reprogrammable heterogeneous computing system is a good solution for UAVs because it enables real-time data stream processing with relatively low energy consumption.


1999 ◽  
Author(s):  
Kenneth Wong ◽  
Vinod J. Modi ◽  
Clarence W. de Silva ◽  
Arun K. Misra

Abstract This paper presents the design and development of a Multi-module Deployable Manipulator System (MDMS) as well as a dynamical formulation for it. The system is designed for experimental investigations aimed at dynamics and control of this variable geometry manipulator by implementing different control algorithms to regulate its performance. The manipulator operates in a horizontal plane and is unique in that it comprises of four modules, each of which has one revolute joint and one prismatic joint, connected in a chain topology. Each module has a slewing link of approximately 20cm length and is capable of extending by 15cm. The manipulator design involves the selection and sizing of actuators, the design of mounting and connecting components, and the selection of hardware as well as software for real-time control. The dynamical model is formulated using an O(N) algorithm, based on the Lagrangian approach and velocity transformations. The O(N) character is computationally efficient permitting real-time control of the system.


Sign in / Sign up

Export Citation Format

Share Document