Experimental Research on the Influence of Pebble Aggregate Gradation on Concrete Strength

2013 ◽  
Vol 438-439 ◽  
pp. 179-182
Author(s):  
Xiu Hai Yin ◽  
Ling Lu

By changing the grading of pebble and water cement ratio, the influence of pebble grading on the compressive strength and flexural strength of concrete is studied at the same pebble content. Test results show that the compression strength and bending strength of concrete decrease with the increasing of the maximal size of coarse aggregate, while the maximal size (Dmax) of pebble aggregate achieves 10mm, 20mm, 40mm and 60mm. And concrete strength decreases significantly when Dmax is 60mm. Meanwhile, the influence of aggregate gradation is obviously with the increase of age time.

2013 ◽  
Vol 671-674 ◽  
pp. 1918-1922
Author(s):  
Yi Zhou Zhuang ◽  
Er Bu Tian ◽  
Yue Zong Lian

Generally the high density in high-strength concrete results in high strength, and so people often mix superplasticizer and particulate to increase the density of concrete, but ignoring the effect of coarse aggregate gradation on concrete strength. Referring to several Gradation Theories, this paper selects the coarse aggregate gradation with skeleton, uses uniform design method to test the compressive strength of high-strength concrete, and analyses the test results. It can be known from the test results of 7d and 28d concrete specimen that the concrete strength decreases linearly with water-cement ratio and sand ratio; The 7d’s concrete strength has higher variability due to low water-cement ratio with superplasticizer; The coarse aggregate skeleton is interfered by the increase of steel slag and sand rate, and the concrete strength decreases with limited cement paste. Furthermore, the steel slag with less than 30% addition has little effect on concrete strength and it can increase the cement’s possibility of contacting to water, and reduce the amount of cement without lowering the concrete strength. The influential degree on the compressive strength of concrete is followed by ascending sequence of steel slag content, sand ratio and water-cement.


2012 ◽  
Vol 450-451 ◽  
pp. 413-416
Author(s):  
Yan Kun Zhang ◽  
Er Yan Chen ◽  
Zhen Lei Guo

From the experimental research, the cube compressive strength and prism compressive strength of combined aggregate concrete are compared. Based on regression analysis, the influence of different substitution ratio of lightweight aggregate, age of concrete and water-cement ratio are studied, and the age coefficient is analyzed. According to the test results, the formula of compressive strength of combined aggregate concrete is given.


2021 ◽  
Vol 1030 ◽  
pp. 88-93
Author(s):  
Adeline Ling Ying Ng ◽  
Hock Rui Liew ◽  
Yew Ching Wong

This paper studies the effect of replacing coarse aggregates with manganese slag on the mechanical properties of concrete. Air-cooled granulated manganese slag was used. The control sample was designed to achieve concrete strength of 30 MPa at 28 days. Tests were conducted on five different compositions of concrete having manganese slag to coarse aggregates ratios of 0, 0.2, 0.3, 0.4, and 1. The specimens were tested at 7, 14, and 28 days for their compressive and flexural strength. Test results revealed that all manganese slag concrete specimens had improved compressive and flexural strength. The maximum compressive strength achieved was 43.54 MPa, increased by 16% of the control specimen and the maximum flexural strength achieved was 4.50 MPa, increased by 22% of the control specimen. Both results were obtained in concrete with 0.4 manganese slag to coarse aggregate ratio. Besides, the study also showed that it might be possible to substitute all coarse aggregates in concrete with manganese slag without any loss in strength. However, it was observed that the concrete workability decreased when manganese slag was added. Nonetheless, this could be corrected using superplasticizer.


2019 ◽  
Vol 276 ◽  
pp. 01027
Author(s):  
Hazairin ◽  
Erma Desmaliana ◽  
Bernardinus Herbudiman ◽  
Wira Yudha Saputra

Porous concrete is an innovation in sustainable concrete technology, which has high porosity concrete without fine aggregate. Porous concrete used in rain gardens, planter boxes, permeable pavements at urban open spaces could absorb rainwater so it can reduce run-off. This experimental study purposes to determine the compressive, split-tensile, flexural strengths, and permeability of porous concrete with various gradation of coarse aggregates. This study used a concrete mixture with coarse aggregate gradation variations of gap, continuous, and uniform on the water cement ratio of 0.4. The test specimens used three cylinders of 15x30cm for compressive and split-tensile strengths, except for uniform gradations used three cylinders of 10x20cm. Beam specimens of 15x15x60cm used for bending strength test by third point loading method. The tested mechanical properties are 7, 14, and 28 days-compressive strengths, 28 days split-tensile strength, and 28 days bending strength. The experimental results also show the average compressive strengths of porous concrete with variation of gradations of gap, continuous, and uniform for 28 days is 14.6 MPa, 13.0 MPa, and 10.6 MPa, respectively. Volumetric flow rate of porous concrete with gap, continuous, and uniform aggregate gradations is 28.4 ml/s, 32.1 ml/s, and 39.3 ml/s, respectively. The experimental results show that gap gradation is recommended due to its better compressive and flexural strengths. In porous concrete, aggregate gradations influence the air content. The highest air content results the lowest compressive strength of concrete. The designed air content should be controlled to maintain the expexted compressive strength of porous concrete.


Lightweight concrete is the way to reduce the weight as well as deflection in concrete members without affecting its properties. Many of the researches are in progress to find a substitute for this lightweight material. In this project, we would like to take the naturally available fibre named sisal fibre and bamboo as partial replacement material. The influence of sisal fibres on the strength of concrete is taken as the main objective of this experimental study. The addition of natural fibre to the lightweight concrete will enhance the various strength parameters like flexural strength, compressive strength, and increase the ductile behaviour. In the present work, it is aimed to investigate the mechanical properties of lightweight concrete with a replacement of sisal fibre for cement and bamboo as a replacement in coarse aggregate in different percentages. The compressive strength, flexural strength, deflection of the beam is studied with consideration of M25 concrete specimens. Totally 36 number of 500 x 100 x 100mm flexural member cast and tested. It is recommended up to 5% replacement of coarse aggregate with bamboo and 5% addition of sisal fibres with cement provide at M25 grade of concrete gives the optimum increases of strength values. The test results indicated that the sisal fibres were effective in improving the strength of lightweight concrete.


2014 ◽  
Vol 881-883 ◽  
pp. 1250-1254
Author(s):  
Qin Zhang ◽  
Song Mao ◽  
Mao Jiang ◽  
Xiao Dong Chen ◽  
Wei Cheng

The raw fly-ash applied in this study has an ignition loss of 17.30 %. The results of floatation experiment show 4.40 % coal content of tailing ash. The screen analysis results on decarburized fly ash shows that the content of +45 μm is above 12 %, failing to meet the quality of Grade I fly ash determined in the standard of China. Therefore, the decarburized fly ash was processed by grinding to meet the required quality. The analysis of the main constituents of different grinding methods conducted for tail fly ash shows that fly ash obtained by open circuit ball mill are the most suitable one used as admixture of concrete. Comparisons were made on the compressive strength and bending strength of 7d and 28d under the conditions of non-grinding and five ways of grinding. The test results show that grinding can improve the compressive strength of fly ash concrete. By way of closed-circuit grinding rod mill, concrete, can fly ash concrete strength be increased remarkablely.


2013 ◽  
Vol 811 ◽  
pp. 223-227
Author(s):  
Yong Ye ◽  
Hong Kai Chen ◽  
Yi Zhou Cai

The objective of this study is to investigate and evaluate the effect of coarse aggregates (aggregate size bigger than 2.36 mm) on the compressive strength and creep behavior of asphalt mixture. The variable that is mainly considered in the study is the gradation degradation of coarse aggregates. A kind of standard aggregate gradation and three kinds of degraded aggregate gradation mixture specimens are used. Uniaxial compression and static creep tests were realized at different loading conditions and temperatures. The test results on asphalt mixture showed that the compressive strength and creep behavior of asphalt mixture are significant affected by the different coarse aggregate gradations.


2013 ◽  
Vol 357-360 ◽  
pp. 1433-1436
Author(s):  
Zong Ping Chen ◽  
Chun Heng Zhou ◽  
Pei Huan Ye

Primary concrete of pebble coarse aggregate were used as the source of recycled aggregate concrete for pebble recycled coarse aggregate. Replacement rate of recycled aggregate for change parameter, 99 specimens were designed. The prism compressive strength, cube compressive strength and flexural strength were tested and achieved. The test results show that damage process and form of pebble coarse aggregate concrete are similar to those of normal concrete. It is gel adhesive failure between coarse aggregate and cement. Comparing with natural aggregate concrete, the strength indexes of recycled aggregate concrete of pebble coarse Aggregate slightly increase.


2012 ◽  
Vol 238 ◽  
pp. 133-137 ◽  
Author(s):  
Wei Xie ◽  
Ya Nan Jin ◽  
Shu Shan Li

To discuss the influence of coarse aggregate size, water cement ratio and ages on the concrete compressive strength,the compressive strength tests were carried out by 54 cubic specimens of pebbles concrete in dimensions of 150mm, 18 cubic specimens with dimensions of 200mm and 72 specimens with size of 150mm×150mm×300mm. The results show that the maximum size of coarse aggregate rises with the decrease of the concrete compressive strength; Concrete compressive strength of coarse aggregate size affects more apparently as the ratio of water-cement decrease; with the increasing of age, concrete compressive strength of the aggregate size effect has no significant changes.


2013 ◽  
Vol 12 (3) ◽  
Author(s):  
Sudarmadi Sudarmadi

In this paper a case study about concrete strength assessment of bridge structure experiencing fire is discussed. Assessment methods include activities of visual inspection, concrete testing by Hammer Test, Ultrasonic Pulse Velocity Test, and Core Test. Then, test results are compared with the requirement of RSNI T-12-2004. Test results show that surface concrete at the location of fire deteriorates so that its quality is decreased into the category of Very Poor with ultrasonic pulse velocity ranges between 1,14 – 1,74 km/s. From test results also it can be known that concrete compressive strength of inner part of bridge pier ranges about 267 – 274 kg/cm2 and concrete compressive strength of beam and plate experiencing fire directly is about 173 kg/cm2 and 159 kg/cm2. It can be concluded that surface concrete strength at the location of fire does not meet the requirement of RSNI T-12-2004. So, repair on surface concrete of pier, beam, and plate at the location of fire is required.


Sign in / Sign up

Export Citation Format

Share Document