scholarly journals Mechanical properties of porous concrete with variations of coarse aggregate gradation

2019 ◽  
Vol 276 ◽  
pp. 01027
Author(s):  
Hazairin ◽  
Erma Desmaliana ◽  
Bernardinus Herbudiman ◽  
Wira Yudha Saputra

Porous concrete is an innovation in sustainable concrete technology, which has high porosity concrete without fine aggregate. Porous concrete used in rain gardens, planter boxes, permeable pavements at urban open spaces could absorb rainwater so it can reduce run-off. This experimental study purposes to determine the compressive, split-tensile, flexural strengths, and permeability of porous concrete with various gradation of coarse aggregates. This study used a concrete mixture with coarse aggregate gradation variations of gap, continuous, and uniform on the water cement ratio of 0.4. The test specimens used three cylinders of 15x30cm for compressive and split-tensile strengths, except for uniform gradations used three cylinders of 10x20cm. Beam specimens of 15x15x60cm used for bending strength test by third point loading method. The tested mechanical properties are 7, 14, and 28 days-compressive strengths, 28 days split-tensile strength, and 28 days bending strength. The experimental results also show the average compressive strengths of porous concrete with variation of gradations of gap, continuous, and uniform for 28 days is 14.6 MPa, 13.0 MPa, and 10.6 MPa, respectively. Volumetric flow rate of porous concrete with gap, continuous, and uniform aggregate gradations is 28.4 ml/s, 32.1 ml/s, and 39.3 ml/s, respectively. The experimental results show that gap gradation is recommended due to its better compressive and flexural strengths. In porous concrete, aggregate gradations influence the air content. The highest air content results the lowest compressive strength of concrete. The designed air content should be controlled to maintain the expexted compressive strength of porous concrete.

Recycling of materials has become a major interest for engineers. At present, the amount of slag deposited in storage yard adds up to millions of tons/year leading to the occupation of farm land and serious pollution to the environment, as a result of the rapid growth in the steel industry. Steel slag is made at 1500- 1650°C having a honey comp shape with high porosity. Using steel slag as the natural aggregate with a lower waste material cost can be considered as a good alternative for sustainable constructions. The objective of this study is to evaluate the performance of residual mechanical properties of concrete with steel slag as coarse aggregate partial replacement after exposing to high temperatures .This study investigates the behavior of using granulated slag as partial or fully coarse aggregate replacement with different percentages of 0%, 15%, 30%, 50% and 100% in concrete when subjected to elevated temperatures. Six groups of concrete mixes were prepared using various replacement percentages of slag exposed to different temperatures of 400 °C, 600 °C and 800 °C for different durations of 1hr, 1.5hr and 2hr. Evaluation tests were compressive strength, tensile strength, and bond strength. The steel slag concrete mixes showed week workability lower than control mix. A systematic increasing of almost up to 21.7% in compressive strength, and 66.2% in tensile strength with increasing the percentage of steel slag replacement to 50%. And the results showed improvement on concrete residual mechanical properties after subjected to elevated temperatures with the increase of steel slag content. The findings of this study give an overview of the effect of steel slag coarse aggregate replacement on concrete after exposed to high temperatures.


2014 ◽  
Vol 911 ◽  
pp. 433-437 ◽  
Author(s):  
A.H. Nur Hidayah ◽  
Md Nor Hasanan ◽  
P.J. Ramadhansyah

Properties of Porous Concrete Paving Blocks (PCPB) were investigated in this study. Two groups of coarse aggregate sizes were performed; passing 8 mm retains 5 mm and passing 10 mm retains 8 mm. For mixture design, 100 % of coarse aggregate were used. However, fine aggregate was eliminated in this investigation. The density, water absorption, flakiness index and elongation index test were performed to determine the properties of the coarse aggregate used in this study. Compression test and skid resistance test were used to evaluate the performance of PCPB. The results show that PCPB containing coarse aggregate size 5 8 mm give high compressive strength compared to others PCPB specimen. In addition, both PCPB specimens give an in increasing in skid resistance approximately 30 % compared to Concrete Paving Blocks (CPB).


2021 ◽  
Vol 2 (1) ◽  
pp. 46-54
Author(s):  
Neti Rahmawati ◽  
Irwan Lakawa ◽  
Sulaiman Sulaiman

Concrete is one of the most widely used building materials today interms of physical construction. Concrete is made from a mixture offine, coarse aggregate, cement, and water with a certain ratio, aswell as materials that are usually added to the concrete mixtureduring or during mixing, to changing the properties of concrete tomake it more suitable in certain jobs and more economical, can alsobe added with certain other mixed materials as needed if deemednecessary. Seashells can be used to mix concrete. This study aims todetermine whether the addition of shells aggregate shells in aconcrete mixture can affect the mechanical properties of concrete.The specimens used are in the form of cubes with a size of 15cm x 15cm x 15 cm, consisting of additional concrete coarse and fineaggregate with shell substitution percentage of 0%, 15%, 20% with atotal sample of 45, with the planned concrete quality of K225. Theuse of sea shells in increasing the compressive strength of concrete isbetter used as fine aggregate than coarse aggregate. The use of seashells as a substitute for fine aggregates achieves maximum resultsat 20% composition.


This paper explains the combined effect of granite cutting waste and recycled concrete on the workability and mechanical properties of self compacting concrete. Experimental plan is divided in such a way that granite cutting waste is replaced with fine aggregate at 0, 20,40,60,80 and 100% proportions. Recycled concrete is replaced with the coarse aggregate starting from 20 to 100%. Total 36 mixes were designed to check the fresh and hardened properties. Slump flow and T500, v-funnel and L-box test are conducted to know the flow ability and passing ability of concrete. To study the hardened properties compressive strength, flexural strength test values are to be collected.


2019 ◽  
Vol 276 ◽  
pp. 01028
Author(s):  
Bernardinus Herbudiman ◽  
Erma Desmaliana ◽  
Andhi Muhammad Irawan

Substitution of Styrofoam balls on coarse aggregates reduced concrete self-weight. Coating on Styrofoam ball surface makes ball has shell on its surface and could increase the adhesive strength between ball surfaces and cement paste. The coating materials made by mixing of Portland cement and RCC-15 (Residual Catalytic Cracker-15) as pozzolanic material. 20 mm diameter Styrofoam balls are used. Coarse aggregates substituted by 5%, 15%, and 20% Styrofoam balls. The test specimens used three 10x20cm cylinders for each variant. Beam specimens of 15x15x60cm used for bending strength test by third point loading method. The testing of mechanical properties were 7, 14, and 28 days compressive strengths, 28 days split-tensile strengths and 28 days flexural strengths. The experimental results of concrete with various Styrofoam ball substitutions of 5%, 15%, and 20% at 28 days show the average compressive strengths are 27.6 MPa, 24.3 MPa, and 20.3 MPa, the splittensile strengths are 2.5 MPa, 2.2 MPa, and 1.7 MPa, and the flexural strengths are 5 MPa, 4.5 MPa, and 3.8 MPa, respectively. The compression strength could be predicted by density ratio method and air content method. The experimental results show that all of the variants of Styrofoam ball coarse aggregates concrete are adequate to achieve structural strength, and have nearly compressive strengths compared with the prediction by density ratio method and air content method. Styrofoam balls substitution content could be increased to make the concrete density below 1,900 kg/m3 and compressive strength above 17.5 MPa to reach structural lightweight concrete performance.


2019 ◽  
Vol 69 (334) ◽  
pp. 190 ◽  
Author(s):  
H. H. Ghayeb ◽  
H. A. Razak ◽  
N.H. R. Sulong ◽  
A. N. Hanoon ◽  
F. Abutaha ◽  
...  

The contribution to global CO2 emissions from concrete production is increasing. In this paper, the effect of concrete mix constituents on the properties of concrete and CO2 emissions was investigated. The tested materials used 47 mixtures, consisting of ordinary Portland cement (OPC) type I, coarse aggregate, river sand and chemical admixtures. Response surface methodology (RSM) and particle swarm optimisation (PSO) algorithms were employed to evaluate the mix constituents at different levels simultaneously. Quadratic and line models were produced to fit the experimental results. Based on these models, the concrete mixture necessary to achieve optimum engineering properties was found using RSM and PSO. The resulting mixture required to obtain the desired mechanical properties for concrete was 1.10-2.00 fine aggregate/cement, 1.90-2.90 coarse aggregate/cement, 0.30-0.4 water/cement, and 0.01-0.013 chemical admixtures/cement. Both methods had over 94% accuracy, compared to the experimental results. Finally, by employing RSM and PSO methods, the number of experimental mixtures tested could be reduced, saving time and money, as well as decreasing CO2 emissions.


2013 ◽  
Vol 438-439 ◽  
pp. 179-182
Author(s):  
Xiu Hai Yin ◽  
Ling Lu

By changing the grading of pebble and water cement ratio, the influence of pebble grading on the compressive strength and flexural strength of concrete is studied at the same pebble content. Test results show that the compression strength and bending strength of concrete decrease with the increasing of the maximal size of coarse aggregate, while the maximal size (Dmax) of pebble aggregate achieves 10mm, 20mm, 40mm and 60mm. And concrete strength decreases significantly when Dmax is 60mm. Meanwhile, the influence of aggregate gradation is obviously with the increase of age time.


2015 ◽  
Vol 773-774 ◽  
pp. 949-953 ◽  
Author(s):  
Izni Syahrizal Ibrahim ◽  
Wan Amizah Wan Jusoh ◽  
Abdul Rahman Mohd Sam ◽  
Nur Ain Mustapa ◽  
Sk Muiz Sk Abdul Razak

This paper discusses the experimental results on the mechanical properties of hybrid fibre reinforced composite concrete (HyFRCC) containing different proportions of steel fibre (SF) and polypropylene fibre (PPF). The mechanical properties include compressive strength, tensile strength, and flexural strength. SF is known to enhance the flexural and tensile strengths, and at the same time is able to resist the formation of macro cracking. Meanwhile, PPF contributes to the tensile strain capacity and compressive strength, and also delay the formation of micro cracks. Hooked-end deformed type SF fibre with 60 mm length and fibrillated virgin type PPF fibre with 19 mm length are used in this study. Meanwhile, the concrete strength is maintained for grade C30. The percentage proportion of SF-PPF fibres are varied in the range of 100-0%, 75-25%, 50-50%, 25-75% and 0-100% of which the total fibre volume fraction (Vf) is fixed at 0.5%. The experimental results reveal that the percentage proportion of SF-PPF fibres with 75-25% produced the maximum performance of flexural strength, tensile strength and flexural toughness. Meanwhile, the percentage proportion of SF-PPF fibres with 100-0% contributes to the improvement of the compressive strength compared to that of plain concrete.


2016 ◽  
Vol 848 ◽  
pp. 454-459
Author(s):  
Cong Wu ◽  
Kang Zhao ◽  
Yu Fei Tang ◽  
Ji Yuan Ma

In order to solve the problem that low thermal conductivity of the plastics for the heat of LED, SiC/Phenolic resin for the heat of LED were fabricated combining powder metallurgy. The effects of particles diameters, content and adding nanoparticles on thermal conductivity of the fabricated composites were investigated, the mechanical properties were also characterized. The experimental results showed that the materials were obtained, and the insulation performance of the fabricated SiC/Phenolic resin was higher than the industry standard one, the thermal conductivity reached 4.1W/(m·k)-1. And the bending strength of the fabricated composites was up to 68.11MPa. The problem of low thermal conductivity of the material is expected to be solved. In addition, it is meaningful for improving LED life.


Author(s):  
M.A.P Handana ◽  
◽  
Besman Surbakti ◽  
Rahmi Karolina ◽  
◽  
...  

The use of borax solution as a preservative in wood and bamboo materials is well known in the community. A borax solution is an environmentally friendly liquid that can dissolve in water, so it is suitable to be used as a preservative within cold or hot soaking techniques. The ability of borax to resist insects and fungus attacks on bamboo has been proven, but the effect of the solution on the strength of bamboo must also be investigated. This study conducts to investigate the effects of borax and its additives as preservative solutions to the mechanical properties of bamboos. The bamboos preservations were conducted by cold conditions of immersion, while the mechanical properties were performed to understand the effects of preservatives. The result of this study indicated that 30% to 50% borax in the preservative solution is sufficient to provide significant increase in strength for compressive strength, tensile strength, and bending strength of bamboo specimen. From this study, the use of borax solution in preserving the bamboos materials improved the quality of bamboos based on its mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document