Real-Time 3D Space Coordinate Acquisition of Medical Visualization Data

2010 ◽  
Vol 44-47 ◽  
pp. 3534-3537
Author(s):  
Zhan Li Hu ◽  
Jian Bao Gui ◽  
Jing Zou ◽  
Jun Yan Rong ◽  
Qi Yang Zhang ◽  
...  

Medical visualization refers to the techniques and processes used to create images of the human body for clinical purposes or medical science including the study of normal anatomy and physiology. The visualization of medical images data sets is to reconstruct 3D images with the 2D slice images so as to reveal the 3D configuration of organs through human visual system. Visual C++ are used to reconstruct 3D images using the CT slice sequence. The key algorithms and human CT 3D visualization results are given in this paper. The coordinates can be acquired by the mouse clicking in the 3D space, by which to realize the point coordinate acquisition of the 3D medicine images. The visualization of medical images can provide us with more information and means of visual interactive for simulated operations and assistant diagnosis. The technique can realize the real time interaction quantitative measurement of three-dimensional CT image.

Author(s):  
Zhongjie Long ◽  
◽  
Kouki Nagamune ◽  
Ryosuke Kuroda ◽  
Masahiro Kurosaka ◽  
...  

Three-dimensional (3D) navigation using a computer-assisted technique is being increasingly performed in minimally invasive surgical procedures because it can provide stereoscopic information regarding the operating field to the surgeon. In this paper, the development of a real-time arthroscopic system utilizing an endoscopic camera and optical fiber to navigate a normal vector for a reconstructed knee joint surface is described. A specific navigation approach suitable for use in a rendered surface was presented in extenso. A small-sized endoscopic tube was utilized arthroscopically on a cadaveric knee joint to show the potential application of the developed system. Experimental results of underwater navigation on a synthetic knee joint showed that our system allows for a higher accuracy than a freehand technique. The mean angle of navigation for the proposed technique is 9.5circ (range, 5circ to 17circ; SD, 2.86circ) versus 14.8circ (range, 6circ to 26circ; SD, 7.53circ) and 12.6circ (range, 4circ to 17circ; SD, 3.98circ) for two sites using a freehand technique.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012204
Author(s):  
Aravind P Madhu ◽  
C Akhil Balu ◽  
Akshay Krishnan ◽  
Adithya Aravind ◽  
Jibin Noble ◽  
...  

Abstract Stereoscopic, or multi-view, display systems that can give significant visual clues for the human brain to understand three-dimensional (3D) objects, they are regarded as better alternatives to traditional two-dimensional (2D) displays. A device that can render 3D images for viewers without the use of specific headgear or glasses is known as an auto-stereoscopic display. Manipulation of light rays via Light engines is also used to create 3D images in 3D space. We introduce a new auto-stereoscopic swept-volume display (SVD) system based on light-emitting diode (LED) arrays in this research. A display device plus a graphics control sub-system makes up this system. The display device is a 2D revolving panel of LEDs that generates 3D images using “persistence of vision”.


Author(s):  
Daniel Jie Yuan Chin ◽  
Ahmad Sufril Azlan Mohamed ◽  
Khairul Anuar Shariff ◽  
Mohd Nadhir Ab Wahab ◽  
Kunio Ishikawa

Three-dimensional reconstruction plays an important role in assisting doctors and surgeons in diagnosing bone defects’ healing progress. Common three-dimensional reconstruction methods include surface and volume rendering. As the focus is on the shape of the bone, volume rendering is omitted. Many improvements have been made on surface rendering methods like Marching Cubes and Marching Tetrahedra, but not many on working towards real-time or near real-time surface rendering for large medical images, and studying the effects of different parameter settings for the improvements. Hence, in this study, an attempt towards near real-time surface rendering for large medical images is made. Different parameter values are experimented on to study their effect on reconstruction accuracy, reconstruction and rendering time, and the number of vertices and faces. The proposed improvement involving three-dimensional data smoothing with convolution kernel Gaussian size 0.5 and mesh simplification reduction factor of 0.1, is the best parameter value combination for achieving a good balance between high reconstruction accuracy, low total execution time, and a low number of vertices and faces. It has successfully increased the reconstruction accuracy by 0.0235%, decreased the total execution time by 69.81%, and decreased the number of vertices and faces by 86.57% and 86.61% respectively.


2020 ◽  
Vol 9 (3) ◽  
pp. 815 ◽  
Author(s):  
Guido Giacalone ◽  
Takumi Yamamoto ◽  
Florence Belva ◽  
Akitatsu Hayashi

Identification of lymphatics by Indocyanine Green (ICG) lymphography in patients with severe lymphedema is limited due to the overlying dermal backflow. Nor can the method detect deep and/or small vessels. Multispectral optoacoustic tomography (MSOT), a real-time three- dimensional (3D) imaging modality which allows exact spatial identification of absorbers in tissue such as blood and injected dyes can overcome these hurdles. However, MSOT with a handheld probe has not been performed yet in lymphedema patients. We conducted a pilot study in 11 patients with primary and secondary lymphedema to test whether lymphatic vessels could be detected with a handheld MSOT device. In eight patients, we could not only identify lymphatics and veins but also visualize their position and contractility. Furthermore, deep lymphatic vessels not traceable by ICG lymphography and lymphatics covered by severe dermal backflow, could be clearly identified by MSOT. In three patients, two of which had advanced stage lymphedema, only veins but no lymphatic vessels could be identified. We found that MSOT can identify and image lymphatics and veins in real-time and beyond the limits of near-infrared technology during a single bedside examination. Given its easy use and high accuracy, the handheld MSOT device is a promising tool in lymphatic surgery.


2007 ◽  
Vol 80 (4) ◽  
pp. 690-700 ◽  
Author(s):  
Atsushi Kato ◽  
Shinzo Kohjiya ◽  
Yuko Ikeda

Abstract Usual rubber products are a composite from rubber and nano-filler (e.g. silica, carbon black, etc.), and it is believed that the good dispersion of the nano-filler is the most important issue determining the performance of rubber vulcanizates. So far, transmission electron microscopy (TEM) has been the most useful tool for evaluation of the dispersion. However, it affords images of the sample projected on an x, y-plane, and the information along the thickness (z-axis) direction is missing. Three-dimensional (3D) visualization of nanometer structure of nano-filler dispersion in a rubber matrix is what all rubber technologists have been dreaming of. This dream is at last realized, and described in this paper. Use of TEM combined with computerized tomography (abbreviated as 3D-TEM in this paper, which is sometimes called electron tomography) enabled us to reconstruct 3D images of nano-filler (silica or carbon black) aggregates in rubbery matrix. It is said that nano-filler aggregate is a structure of size from 10 nm to 1000 nm, and agglomerate is an even larger structure. The 3D-TEM results on silica aggregates in natural rubber were presented in this paper. Silica aggregates were characterized by combining the 3D images of the vulcanizates. Furthermore, density of silica loaded natural rubber as an example of physical properties, was measured, and explained by the structure elucidated by 3D-TEM.


2012 ◽  
Vol 256-259 ◽  
pp. 2431-2434
Author(s):  
Xu Liu ◽  
Bo Cui ◽  
Da Wei Tong

According to the high earth dam with a large volume, high construction intensity, tense schedule, numerous construction machines, complex technology, and a lot of unexpected risk factors, the construction transportation becomes poor if the arrangement for transportation to the dam is unreasonable, which may result in schedule delays. This paper discusses the system of the real-time 3D visualization on network environment which is based on Unity3D engine, and the query of real-time three-dimensional visual information for transportation to the dam on the network environment is achieved. Users can have a real-time view of the dump truck during transportation and optimize the arrangements of construction organization. The results of research have great practical significance.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3928
Author(s):  
Sepehr Makhsous ◽  
Joelle M. Segovia ◽  
Jiayang He ◽  
Daniel Chan ◽  
Larry Lee ◽  
...  

Human exposure to infectious aerosols results in the transmission of diseases such as influenza, tuberculosis, and COVID-19. Most dental procedures generate a significant number of aerosolized particles, increasing transmission risk in dental settings. Since the generation of aerosols in dentistry is unavoidable, many clinics have started using intervention strategies such as area-filtration units and extraoral evacuation equipment, especially under the relatively recent constraints of the pandemic. However, the effectiveness of these devices in dental operatories has not been studied. Therefore, the ability of dental personnel to efficiently position and operate such instruments is also limited. To address these challenges, we utilized a real-time sensor network for assessment of aerosol dynamics during dental restoration and cleaning producers with and without intervention. The strategies tested during the procedures were (i) local area High-Efficiency Particle Air (HEPA) filters and (ii) Extra-Oral Suction Device (EOSD). The study was conducted at the University of Washington School of Dentistry using a network of 13 fixed sensors positioned within the operatory and one wearable sensor worn by the dental operator. The sensor network provides time and space-resolved particulate matter (PM) data. Three-dimensional (3D) visualization informed aerosol persistence in the operatory. It was found that area filters did not improve the overall aerosol concentration in dental offices in a significant way. A decrease in PM concentration by an average of 16% was observed when EOSD equipment was used during the procedures. The combination of real-time sensors and 3D visualization can provide dental personnel and facility managers with actionable feedback to effectively assess aerosol transmission in medical settings and develop evidence-based intervention strategies.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Wei He ◽  
Peng Ran ◽  
Zheng Xu ◽  
Bing Li ◽  
Song-nong Li

As the researches of electric impedance tomography (EIT) applications in medical examinations deepen, we attempt to produce the visualization of 3D images of human bladder. In this paper, a planar electrode array system will be introduced as the measuring platform and a series of feasible methods are proposed to evaluate the simulated volume of bladder to avoid overfilling. The combined regularization algorithm enhances the spatial resolution and presents distinguishable sketch of disturbances from the background, which provides us with reliable data from inverse problem to carry on to the three-dimensional reconstruction. By detecting the edge elements and tracking down the lost information, we extract quantitative morphological features of the object from the noises and background. Preliminary measurements were conducted and the results showed that the proposed algorithm overcomes the defects of holes, protrusions, and debris in reconstruction. In addition, the targets' location in space and roughly volume could be calculated according to the grid of finite element of the model, and this feature was never achievable for the previous 2D imaging.


2006 ◽  
Vol 79 (4) ◽  
pp. 653-673 ◽  
Author(s):  
Atsushi Kato ◽  
Junichi Shimanuki ◽  
Shinzo Kohjiya ◽  
Yuko Ikeda

Abstract Usual rubber products are a composite from rubber and nano-filler (e.g. carbon black, silica, etc.), and it is believed that the good dispersion of the nano-filler is the most important issue determining the performance of rubber vulcanizates. So far, transmission electron microscopy (TEM) has been the most useful tool for evaluation of the dispersion. However, it affords images of the sample projected on an x, y-plane, and the information along the thickness (z-axis) direction is missing. Three-dimensional (3D) visualization of nanometer structure of nano-filler dispersion in a rubber matrix is what all rubber technologists have been dreaming of. This dream is at last realized, and described in this paper. Use of TEM combined with computerized tomography (abbreviated as 3D-TEM in this paper, which is sometimes called electron tomography) enabled us to reconstruct 3D images of nano-filler aggregates in rubbery matrix. The 3D-TEM results on carbon black in natural rubber were presented in this paper. The network structure formed by agglomeration of carbon black aggregates was elucidated by combining the 3D images and physical properties of the vulcanizates. Density, electrical resistivity and dielectric relaxation of carbon black loaded natural rubber as an example of physical properties, were measured, and explained by the structure elucidated by 3D-TEM. This technique will prove to be more and more important for the rational design of the nano-composites of rubbery matrix.


2018 ◽  
Vol 15 (6) ◽  
pp. 172988141881377
Author(s):  
Sheng Feng ◽  
Chengdong Wu ◽  
Yunzhou Zhang ◽  
Shigen Shen

In this research, the authors have addressed the collaboration calibration and real-time three-dimensional (3D) localization problem in the multi-view system. The 3D localization method is proposed to fuse the two-dimensional image coordinates from multi-views and provide the 3D space location in real time. It is a fundamental solution to obtain the 3D location of the moving object in the research field of computer vision. Improved common perpendicular centroid algorithm is presented to reduce the side effect of the shadow detection and improve localization accuracy. The collaboration calibration is used to generate the intrinsic and extrinsic parameters of multi-view cameras synchronously. The experimental results show that the algorithm can complete accurate positioning in indoor multi-view monitoring and reduce the complexity.


Sign in / Sign up

Export Citation Format

Share Document