Kinematics and Dynamics Analysis of Piston-Connecting Rod Mechanism of Internal Combustion Engine

2013 ◽  
Vol 470 ◽  
pp. 539-542
Author(s):  
Zhi Ning Jia ◽  
Cai Zhe Hao ◽  
Jian Bo Sun ◽  
Xiang Yu Liu

The kinematic and dynamic performances of piston-connecting rod mechanism of internal combustion engine (ICE) were analyzed in detail. Taking standard slider-crank mechanism as study object, the kinematic and dynamic parameters (velocity, acceleration, angular acceleration etc.) of linkage were derived. Under no any simplification, the calculating method of each physical parameter was provided. Meanwhile, taking the factual force applied to connecting rod into account, the graphical method of vector equation was used to solve each load imposed on connecting rod. The research works were believed to be beneficial to subsequent finite element analysis (stress and train fields, fatigue of connecting rod) and size optimization design of connecting rod.

2021 ◽  
Vol 16 (1) ◽  
pp. 90-95
Author(s):  
Il'mas Salahutdinov ◽  
Andrey Gluschenko ◽  
Denis Molochnikov ◽  
Sergey Petryakov ◽  
Ilnar Gayaziev

The research was carried out in order to determine the possibility of assessing the technical condition of an internal combustion engine (ICE) by the value of the total electromotive force (EMF) that occurs in its friction pairs. The contact area of the rubbing parts and the gap between them affects the electrical resistance in contact, and, accordingly, the value of the resulting EMF according to the established dependence. To confirm the theoretical results, studies were carried out on the UMP-417 engine using a developed measuring complex and a manufactured current-collecting device mounted on the output end of the engine crankshaft. With the operating mode corresponding to the speed of the crankshaft 800 min-1, the total value of the EMF in the measurement circuit cylinder liner-engine block-crankshaft-current collector (TSU) was 83...95 mV. At the same time, in the piston–cylinder liner friction pair, it was equal to 37 ... 47 mV, and in the crank mechanism friction pairs - 46...48 mV. The correspondence of the results of the theoretical calculation and bench studies of the values of the EMF value for a real internal combustion engine was: when measured using the Fluke device for the friction unit of the cylinder liner-piston – 62.1 %, for the friction units of the crank mechanism (root neck-connecting rod, connecting rod neck-connecting rod, root neck-engine block) - 15.1 %. When measured by the V1net device, for the cylinder liner – piston friction unit-85.5 %, for the crank mechanism friction units (root neck-connecting rod, connecting rod neck-connecting rod, root necks-engine block) - 93.2 %. The proposed method for determining the state of the engine by the value that occurs in its EMF friction nodes can be used in the technical diagnostics of engines


2013 ◽  
Vol 744 ◽  
pp. 35-39
Author(s):  
Lei Ming Shi ◽  
Guang Hui Jia ◽  
Zhi Fei Zhang ◽  
Zhong Ming Xu

In order to obtain the foundation to the research on the Diesel Engine YN4100QB combustion process, exhaust, the optimal design of combustion chamber and the useful information for the design of exhaust muffler, the geometric model and mesh model of a type internal combustion engine are constructed by using FIRE software to analyze the working process of internal combustion engine. Exhaust noise is the main component of automobile noise in the study of controlling vehicle noise. It is primary to design a type of muffler which is good for agricultural automobile engine matching and noise reduction effect. The present car mufflers are all development means. So it is bound to cause the long cycle of product development and waste of resources. Even sometimes not only can it not reach the purpose of reducing the noise but also it leads to reduce the engine dynamic. The strength of the exhaust noise is closely related to engine combustion temperature and pressure. The calculation and initial parameters are applied to the software based on the combustion model and theory. According to the specific operation process of internal combustion engine. Five kinds of common operation condition was compiled. It is obtained for the detailed distribution parameters of combusted gas temperature pressure . It is also got for flow velocity of the fields in cylinder and given for the relation of the parameters and crankshaft angle for the further research. At the same time NOx emissions situation are got. The numerical results show that not only does it provide the 3D distribution data in different crank shaft angle inside the cylinder in the simulation of combustion process, but also it provides a basis for the engine combustion ,emission research, the optimization design of the combustion chamber and the useful information for the designs of muffler.


2021 ◽  
pp. 3-6
Author(s):  

A new layout of a two-cylinder internal combustion engine with counter-pistons is proposed, which increases its efficiency by reducing the pressure angles. The dynamics of the proposed arrangement of a two-shaft crank-slider internal combustion engine, which provides maximum torque moment at maximum gas pressure in the minimum volume of the combustion chamber, is investigated, which reduces the load on the engine design and its weight and dimensional parameters. The research was carried out by comparing the dynamic characteristics of different engines using vector modular models and the KDAM program. Keywords: internal combustion engine, crank mechanism, indicator diagram, dynamic characteristics, torque moment, vector, contour, model, module [email protected]


2018 ◽  
Author(s):  
◽  
Muslim Muhsin Ali

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] The main object of this dissertation is to study the dynamic analysis of an inline internal combustion engine. This dissertation presents the kinematics and kinetic analyses of an inline internal combustion engine crank mechanism, the dynamic torque imbalance and foundation forces for a single-piston and multi-piston engines are studied as well. The objectives of this dissertation are to explore the inertial-torque characteristics and foundation forces of an inline, internal combustion engine with connecting-rod joints that are evenly spaced about the centerline of the crankshaft, and to evaluate the goodness of a mass approximation that is customarily used in machine design textbooks. In this dissertation the number of pistons within the internal combustion engine is varied from 1 to 8. In order to generalize the results, the reaction force between the ground and the crank in the x-direction and y-direction equations are nondimensionalized and shown to depend upon only six nondimensional groups, all related to the mass and geometry properties of the connecting rod and crank while the reaction force between the connecting rod and the piston in the x-direction y-direction, reaction force between the crank and the connecting rod in the x-direction y-direction, reaction force between the piston and the cylinder wall, and the inertial-torque equations are nondimensionalized all related to the mass and geometry properties of the connecting rod. As shown in this dissertation, the largest torque imbalance is exhibited by a 2-piston engine. The next largest torque imbalance is exhibited by a 3-piston engine, followed by a single-piston engine (this is not monotonic). The largest foundation forces are exhibited by a single-piston engine. The next largest foundation forces are exhibited by a 2-piston engine, followed by a 3e-piston engine, and that a dramatic reduction in the foundation forces and torque imbalance may be obtained by using 4 or more pistons in the design, when using as many as 8 pistons the foundation forces and torque imbalance essentially vanishes. It should be observed that the mass approximation captures 100 percent of the variability of the actual torque imbalance for engines that are designed with an odd number of pistons equal to or greater than three. The mass approximation captures 100 percent of the variability of the actual reaction force between the piston and cylinder wall for engines that are designed with single-piston and multi-pistons. The mass approximation captures 100 percent of the variability of the actual reaction force against piston pin for engines that are designed with single-piston. It is also shown in this dissertation that the customary mass approximations for the connecting rod may be used to simplify the analysis for all engine designs without a significant loss of modeling accuracy.


2010 ◽  
Vol 139-141 ◽  
pp. 938-942
Author(s):  
Ji Jing Lin ◽  
Yan Hong Chen

MFPSE, Micro Free Piston Swing Engine, is a new type of miniature internal combustion engine based on the working principle of two-stroke swing engine. The successful development and operation of this type of miniature internal combustion engine provide important significance for the miniaturization of the internal combustion engine, and provide a number of important research theory, computation method and experimental data. In this article, according to the work characteristics and co-ordination requirements of MFPSE (Micro Free Piston Swing Engine), whose strain interference is analyzed using finite element analysis software, the problems and interference of the center pendulum and cylinder is found evidently. The data of analysis provides theory basis for the MFPSE’s structural optimization, and is critical to improve the performance of MFPSE.


2019 ◽  
pp. 146808741989358 ◽  
Author(s):  
Mostafa A ElBahloul ◽  
ELsayed S Aziz ◽  
Constantin Chassapis

Fuel conversion efficiency is one of the main concerns in the field of internal combustion engine systems. Although the Otto cycle delivers the maximum efficiency possible in theory, the kinematics of the slider–crank mechanism of the conventional internal combustion engines makes it difficult to reach this level of efficiency in practice. This study proposes using the unique hypocycloid gear mechanism instead of the conventional slider–crank mechanism for the internal combustion engines to increase engine efficiency and minimize frictional power losses. The hypocycloid gear mechanism engine’s kinematics provides the means for the piston-rod assembly to reciprocate in a straight-line motion along the cylinder axis besides achieving a nonlinear rate of piston movement. As a result, this characteristic allows for a true constant-volume combustion, which in turn would lead to higher work output. An in-cylinder gas volume change model of the hypocycloid gear mechanism engine was developed and incorporated into the thermodynamic model for the internal combustion engine cycle. The thermodynamic model of the hypocycloid gear mechanism engine was developed and simulated using MATLAB/Simulink software. A comparison between the conventional engine and the hypocycloid gear mechanism engine in terms of engine performance characteristics showed the enhancements achieved using hypocycloid gear mechanism for internal combustion engine applications. The hypocycloid gear mechanism engine analysis results indicated higher engine efficiency approaching that of the Otto cycle.


Author(s):  
F. Zhang ◽  
B. J. Gilmore ◽  
A. Sinha

Abstract Tolerance allocation standards do not exist for mechanical systems with flexibility and whose response are time varying, subjected to discontinuous forcing functions. Previous approaches based on optimization and numerical integration of the dynamic equations of motion encounter difficulty with determining sensitivities around the force discontinuity. The Alternating Frequency/Time approach is applied here to capture the effect of the discontinuity. The effective link length model is used to model the system and to account for the uncertainties in the link length, radial clearance and pin location. Since the effective link length model is applied, the equations of motion for the nominal system can be applied for the entire analysis. Optimization procedure is applied to the problem where the objective is to minimize the manufacturing costs and satisfy the constraints imposed on mechanical errors and design variables. Examples of tolerance allocation are presented for a single cylinder internal combustion engine with a flexible connecting rod.


2012 ◽  
Vol 24 (3) ◽  
pp. 487-497 ◽  
Author(s):  
Hiroki Ishikawa ◽  
◽  
Yuta Takeda ◽  
Satoshi Ashizawa ◽  
Takeo Oomichi

An internal combustion engine with a crank mechanism moves with its piston and load mechanism interlocked, and this poses a problem for efficiency improvement. We therefore built a system in which the piston and load mechanism linearly; a generator is used in the combustion stroke and a motor is used in the exhaust, intake, and compression strokes. This system can control piston motion freely, so generation energy and consumption energy in each stroke can be optimized. To check its effectiveness, we developed a simulator in which an engine mechanism and motor/generator is integrated, we performed an energy simulation, and we verified the effectiveness of the method of operation of the proposed system.


2001 ◽  
Vol 123 (3) ◽  
pp. 444-454 ◽  
Author(s):  
Byung-Jik Kim ◽  
Kyung-Woong Kim

A comprehensive method of thermo-elastohydrodynamic lubrication analysis for connecting rod bearings is proposed, which includes thermal distortion as well as elastic deformation of the bearing surface. Lubrication film temperature is treated as a time-dependent, two-dimensional variable which is averaged over the film thickness, while the bearing temperature is assumed to be time-independent and three-dimensional. It is assumed that a portion of the heat generated by viscous dissipation in the lubrication film is absorbed by the film itself, and the remainder flows into the bearing structure. Mass-conserving cavitation algorithm is applied, and the effect of variable viscosity is included in the Reynolds equation. Simulation results of the connecting rod bearing of an internal combustion engine are presented. It is shown that the predicted level of the thermal distortion is as large as that of the elastic deformation and the bearing clearance, and that the thermal distortion has remarkable effects on the bearing performance. Therefore, the thermo-elastohydrodynamic lubrication analysis is strongly recommended to predict the performance of connecting rod bearings in internal combustion engines.


Sign in / Sign up

Export Citation Format

Share Document