An Incremental Method for Cable Force Tuning of the Concrete Cable-Stayed Bridge Considering Cable-Girder Temperature Difference Effect

2013 ◽  
Vol 477-478 ◽  
pp. 690-696
Author(s):  
Niu Jing Ma

To ensure that the cable force tuning of Banfu No.2 bridge was carried out successfully, an incremental method for cable force tuning was presented, which took into account the cable-girder temperature difference. The cable forces were measured through frequency method. Before cable force tuning, all cable forces and temperatures of cables and girders were measured when the ambient temperature was stable, and these cable forces were taken as reference cable forces. During cable force tuning, the increment of cable force was regarded as the control quantity, while the displacement in the middle of main span was regarded as the verification quantity. After each stage, it was necessary to measure the temperatures of cables and girders and the displacement variation in the middle of the main span. To ensure the mechanical state of bridge was in control, all cable forces were measured after the 5th, 10th pairs of cables and all cables were tuned. In addition, the temperature-corrected cable forces were compared with the calculated ones, which showed the incremental method was not only accurate but also efficient.

2011 ◽  
Vol 378-379 ◽  
pp. 341-344
Author(s):  
Wei Feng Tian ◽  
Shui Xing Zhou ◽  
Ayad Thabet Saeed Alghabsha

Calculation of cable force under seasonal ambient temperature is the key and difficult problem in the construction of long-span rib arch bridge. It affects the final cable forces and deformations of arch rib after arch closure. Unstressed state control method is introduced in the construction of Daning River Bridge; unstressed qualities of ribs and unstressed length of cables can be obtained by optimization analysis of the maximum cantilever state in construction. According to unstressed state control method, the cable forces of each segment were calculated using the forward-iteration method. These results offer the basis for construction control, and guarantee the arch rib line and cable forces to meet the design requirements, and an arch closure with high precision.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Yan-feng Li ◽  
Xing-long Sun ◽  
Long-sheng Bao

A model test and finite element analysis were conducted in this study to determine the distribution law of shear lag effect in the main beam section, a box girder, during the cable-stayed bridge construction process. The experimental and theoretical results were compared in an example of loading the control section. The stress value of the cable tension area of the main beam upper edge was found to markedly change when tensiling the cable force and was accompanied by prominent shear lag effect. After a hanging basket load was applied, the main beam of certain sections showed alternating positive and negative shear lag characteristics. The shear lag distribution law in the box girder of the single-cable-plane prestressed concrete cable-stayed bridge along the longitudinal direction was determined in order to observe the stress distribution of the girder. The results show that finite element analysis of the plane bar system should be conducted at different positions in the bridge under construction; the calculated shear lag coefficient of the cable force acting at the cable end of the cantilever reflects the actual force. In the beam segments between the cable forces, the shear lag coefficient determined by the ratio of the bending moment to the axial force reflects the actual stress at the cable force action point. In the midspan beam section between the action points of cable forces, the shear lag coefficient of the bending moment reflects the actual stress. The section shear lag coefficient can be obtained by linear interpolation of the beam section between the cable action point and the middle of the span.


2013 ◽  
Vol 663 ◽  
pp. 172-176
Author(s):  
Liang Dong Zhu ◽  
Zhi Zhou Bai ◽  
De Wei Chen

The Pylon of Xinjiang Cable-Stayed Bridge has a special geometric form, of which the anchorage zone adopts the steel-concrete composite structure with built-in steel anchorage box. To investigate the mechanical behavior, the refined 3D finite element model has been established with the shear nails of steel anchorage box simulated. The stress conditions of steel anchorage box and concrete under prestressing bar and stayed cable forces have been then studied. The bearing proportion at the anchorage zone for the horizontal component of cable force has been calculated. Results indicate that the overall mechanical performance of the anchorage zone is excel, which can be a reference for designing of similar structure.


2011 ◽  
Vol 243-249 ◽  
pp. 1567-1572
Author(s):  
Tao Zhang ◽  
Hai Feng Bai

Optimum design for a cable-stayed bridge structure is very complicated because of large number of design variables. Use of ANSYS parametric design language in optimizing such structure consumes little computational time. The finished dead state analysis for single pylon double cable plane cable-stayed bridge with 120m long is performed. Mechanics equivalent are developed for the main pylon with concrete-filled steel tube. Prestress girder finite element model is established also. The theory of minimum bending strain energy is used in deriving the objective function as the quadratic form of the post-tensioning cable forces. In addition, the maximum deflection of the pylon and the maximum stresses of the main girder are both implemented in the optimization model. Optimized cable forces are found by optimization. Calculated results show that after the optimization, the cable force slightly changes, yet the internal force state under dead load remarkably improves, the bending stress of girder as well as the deflection of pylon significantly decreases. All these variations are satisfied for the limit value of engineering code. The results obtained revealed that the method presented indeed leads to optimal structural performance for the cable-stayed bridge in particular, and might be a useful reference for the design of other similar bridges.


2014 ◽  
Vol 587-589 ◽  
pp. 1558-1562
Author(s):  
Hai Hong Mo

The nonlinear basic theory and nonlinear influence factor of cable-stayed bridge has been introduced. Quantitative analysis to the sag effect, beam-column effect and large deformation effect has been done based on a cable-stayed bridge. Analysis show that the sag effect, beam-column effect and large deformation effect of cable force is not obvious, but the sag effect should not been ignored in the calculation of the main beam.


2021 ◽  
Author(s):  
Li Dong ◽  
Bin Xie ◽  
Dongli Sun ◽  
Yizhuo Zhang

<p>Cable forces are primary factors influencing the design of a cable-stayed bridge. A fast and practical method for cable force estimation is proposed in this paper. For this purpose, five input parameters representing the main characteristics of a cable-stayed bridge and two output parameters representing the cable forces in two key construction stages are defined. Twenty different representative cable-stayed bridges are selected for further prediction. The cable forces are carefully optimized through finite element analysis. Then, discrete and fuzzy processing is applied in data processing to improve their reliability and practicality. Finally, based on the input parameters of a target bridge, the maximum possible output parameters are calculated by Bayes estimation based on the processed data. The calculation results show that the average prediction error of this method is less than 1% for the twenty bridges themselves, which provide the primary data and less than 3% for an under-construction bridge.</p>


2014 ◽  
Vol 587-589 ◽  
pp. 1364-1369
Author(s):  
Cheng Wu ◽  
Jin Yu Liu ◽  
Shui Xing Zhou

Taking the bare arch deformation under gravity as target alignment, the influence matrix that associates the cable forces with segment deformation is obtained via ANSYS program, and the cable force is quickly calculated by MATLAB quadratic programming toolbox. It is illustrated with an example of Guizhou Zong-xi River Bridge, which is a 360-meter concrete filled steel tube bridge in construction, and the calculation process is given. The results show that, this new method has the advantages of high precision and less number of iterations.


Sign in / Sign up

Export Citation Format

Share Document