Static Deformational Behaviors of Cable-Stayed Suspension Bridge and its Simplified Material Cost Model

2014 ◽  
Vol 501-504 ◽  
pp. 1221-1227 ◽  
Author(s):  
Fei Jin Zhang ◽  
Li Li Nie ◽  
Hong You Cao

Cable-stayed suspension bridge is an unconventional bridge type with a bridge typology based on the combination of both cable-stayed and suspension systems. In this paper, the static behaviors of cable-stayed suspension bridge were revealed from the viewpoint of the structural deformational characteristics under different kinds of live loads. To more clearly illustrate these characteristics, the simplified analytical method based on the simplified analytical solutions for cable-stayed bridges and suspension bridges were adopted in the derivations. Furthermore, the simplified material cost model based on allowable stress method for cable-stayed suspension bridge was also proposed for researchers and designers to adopt in preliminary design stage.

1999 ◽  
Vol 103 (1026) ◽  
pp. 383-388 ◽  
Author(s):  
K. Gantois ◽  
A. J. Morris

Abstract The Paper describes a metal and composite recurrent cost model of a large civil aircraft wing structure for a multidisciplinary design, analysis and optimisation (MDO) environment. The work was part of a recent European MDO project (BE95-2056) which investigated methods for the integration of structures, aerodynamics, dynamics and manufacturing cost at the preliminary design stage. The paper discusses the cost modelling approach, which is based on parametric and process cost model methods, and the integration of the cost models into an MDO process. Results for the cost models are shown. A framework has been successfully developed which allows the incorporation of manufacturing cost models into an MDO environment. It allows a designer to evaluate cost changes with respect to specific design changes such as rib pitch, stringer pitch, wing area and wing sweep.


2013 ◽  
Vol 683 ◽  
pp. 845-850
Author(s):  
Rong Gui Liu ◽  
Guo Ying Feng ◽  
Bei Chen

Cable-stayed suspension bridge with Carbon Fibre Reinforced Plastics(CFRP) cables is a new type of bridge structure. To study the dynamic characteristics for this kind of bridges, and its differences from cable-stayed bridges of the same span level, finite element dynamic modle of a Cable-stayed suspension bridge with main span of 1488 meters is established and a series of calculations is done. The results show that, natural frequencies of cable-stayed suspension bridges with CFRP cables are relatively small, integral frequencies are stepped and discontinuous; Its modes are centralized and the natural vibration modes show a lot of coupling; The natural frequencies of this kind of bridges are smaller than cable-stayed bridges of the same span level, the entire stiffness decreased.


Author(s):  
Sami Soppela ◽  
Esko Järvenpää

<p>The cables are the major loadbearing cost components in the longitudinal direction of a cable-stayed bridge. The quantity of the cables reflects directly to the comparative costs of different alternative layouts. The cable forces, calculated for permanent load balance lead to a reliable cable quantity estimation. For a long-term durability it is important that the bridge is in balance for permanent loads. The influence of the live loads can be estimated separately.</p><p>The purpose of this article is to estimate cable quantities in an early design stage when finding the optimum solution for the bridge. A simple solution method is carried out mathematically using vector algebra and the force length method. This article sets a clear path for determining the preliminary cable forces and cable quantities for two-pylon and single-pylon cable-stayed bridges. The variables are the span length relation, pylon height relation to the main span length, optimum cable anchorage distance at the pylon and the permanent load of the deck.</p><p>Also, the cable quantities of single-pylon bridges can be calculated, even for bridges with highly asymmetric spans. It is noted that the single-pylon cable-stayed bridge has remarkably bigger cable quantity than the two- pylon bridge with equal length.</p><p>The results reveal that the optimum cable anchorage distance in the pylon depends on the pylon height. The higher the pylon is, the greater the optimum anchorage distance should be.</p><p>For the durable bridge an optimum layout and a good balance for gravity loads with minimized bending moments are an important design target. The article helps in reaching that target.</p>


2010 ◽  
Vol 16 (3) ◽  
pp. 363-371 ◽  
Author(s):  
Tatjana Grigorjeva ◽  
Algirdas Juozapaitis ◽  
Zenonas Kamaitis

Increased deformability can be considered as the basic disadvantage of suspension bridges. One of the ways to increase the rigidity of a suspension bridge is to transfer a part of stiffening girder rigidity to a suspension main cable. To give the suspension bridge more stable appearance, the authors propose to use the cables of varying bending stiffness. The main cables can be made of standard section shapes or have a composite section. The object of this work was to study a method for analyzing and determining the internal forces in the main cables and stiffening girder under static loading to provide recommendations for designing suspension bridges with stiffened cables. Simple formulas are presented for determining displacements, internal forces and stresses in the main cable and stiffening girder. Finite element modeling was performed. The final part of the paper discusses design procedures for such suspension systems. An example of a pedestrian suspension bridge is appended. Santrauka Esminis kabamuju tiltu trūkumas ‐ didelis ju deformatyvumas. Deformatyvumui sumažinti autoriai siūlo dali standumo sijos lenkiamojo standžio perduoti kabamajam lynui. Baigtinio lenkiamojo standumo lynai gali būti daromi iš standartiniu valcuotuju profiliuočiu arba sudetinio skerspjūvio. Šio darbo tikslas ‐ pateikti supaprastinta metodika kabamojo tilto standaus lyno ir standumo sijos elgsenos analizei atlikti bei rekomendacijas tokiems statiškai apkrautiems tiltams projektuoti. Pateiktos paprastos formules lyno ir sijos poslinkiams, iražoms ir itempiams apskaičiuoti. Atliktas kabamosios tilto siste‐mos modeliavimas baigtiniais elementais. Aptartos tokiu kabamuju tiltu projektavimo procedūros. Pateiktas pesčiuju via‐duko kabamuju konstrukciju projektavimo pavyzdys.


2020 ◽  
Author(s):  
Michael Müller ◽  
Wolfgang Eilzer ◽  
Rafael Rodriguez

Today the total length of the federal trunk highway roads in Germany is about 50,000 km being one of the densest traffic in whole Europe. Among these are approximately 40,000 bridges with a total area of 30 million. Square meters. Fifty percent of these bridges were built in the years between 1960 to 1980. At that time these bridges were mainly designed according to German Standard DIN 1072 for bridge class SLW 60 (60 ton truck). Based on the traffic given at those times, no fatigue checks were required. This assumption seemed fair enough because the massive increase, especially in heavy traffic, could not have been anticipated.  Since the mid-20th century until our days, the bridges over the river Rhine have set a milestone on the history of bridge engineering. Some contributions from the team led by Fritz Leonhardt and Wolfhart Andrä, such as the Cologne-Rodenkirchen suspension bridge, the series of steel bridges with continuous webs developed in the 60´s decade, the Düsseldorf cable stayed bridges family, the widenings and retrofitings of the 80´s decade, or the most recent contributions, encompass widely different typologies and periods and provide valuable learnings. Their preservation, retrofit or eventual replace if necessary, entail an important challenge for the present and future. The starting point of such a strengthening or eventual replacement is always the assessment of the existing bridge under consideration of its actual condition, the prognosticated loads and requirements of future utilization. This assessment process and rating of existing structures was regulated by the German government in 2012 in the “Nachrechnungs”- guidelines. The result of such an assessment is the basis of any further decision about the future of a structure, whether it will be rehabilitated, retrofitted or replaced.   The presentation will focus on the experiences gained under the new guideline and the wide range of engineering services involved in such a rehabilitation planning, using the examples of the Suspension bridges over the River Rhine at Emmerich and Köln-Mühlheim, and will show the specific experience gained through these strengthening projects, but also a short overview about the new cable-stayed bridges in Leverkusen and Duisburg that are built under the premise to maintain traffic for 2 of the most importante highways in Germany.


Author(s):  
M-G Yang ◽  
Z-Q Chen ◽  
X-G Hua

This article presents a geometrically non-linear finite-element method for an accurate and efficient analysis of spatial cable structures. A two-node catenary cable element is formulated accurately considering the effect of self-weight of cable element. The tangent stiffness matrix of the cable element is derived as an accurate explicit expression of structural parameters and the nodal forces of the cable element are then also analytically calculated. Pre-stress in the cable element may be considered in the formulation. Three classical numerical examples are first provided to show the accuracy and efficiency of this method and the developed method is then applied to construction stage simulation in order to determine the erection parameters of a suspension bridge through progressive non-linear analysis. The cable element proposed can be conveniently used for the geometric non-linear analysis of flexible structures such as long-span suspension bridges, cable-stayed bridges, and tension structures.


2006 ◽  
Vol 11 (3) ◽  
pp. 293-318 ◽  
Author(s):  
M. Zribi ◽  
N. B. Almutairi ◽  
M. Abdel-Rohman

The flexibility and low damping of the long span suspended cables in suspension bridges makes them prone to vibrations due to wind and moving loads which affect the dynamic responses of the suspended cables and the bridge deck. This paper investigates the control of vibrations of a suspension bridge due to a vertical load moving on the bridge deck with a constant speed. A vertical cable between the bridge deck and the suspended cables is used to install a hydraulic actuator able to generate an active control force on the bridge deck. Two control schemes are proposed to generate the control force needed to reduce the vertical vibrations in the suspended cables and in the bridge deck. The proposed controllers, whose design is based on Lyapunov theory, guarantee the asymptotic stability of the system. The MATLAB software is used to simulate the performance of the controlled system. The simulation results indicate that the proposed controllers work well. In addition, the performance of the system with the proposed controllers is compared to the performance of the system controlled with a velocity feedback controller.


Author(s):  
Emre Kahramanoglu ◽  
Silvia Pennino ◽  
Huseyin Yilmaz

The hydrodynamic characteristics of the planing hulls in particular at the planing regime are completely different from the conventional hull forms and the determination of these characteristics is more complicated. In the present study, calm water hydrodynamic characteristics of planing hulls are investigated using a hybrid method. The hybrid method combines the dynamic trim and sinkage from the Zarnick approach with the Savitsky method in order to calculate the total resistance of the planing hull. Since the obtained dynamic trim and sinkage values by using the original Zarnick approach are not in good agreement with experimental data, an improvement is applied to the hybrid method using a reduction function proposed by Garme. The numerical results obtained by the hybrid and improved hybrid method are compared with each other and available experimental data. The results indicate that the improved hybrid method gives better results compared to the hybrid method, especially for the dynamic trim and resistance. Although the results have some discrepancies with experimental data in terms of resistance, trim and sinkage, the improved hybrid method becomes appealing particularly for the preliminary design stage of the planing hulls.


Structures ◽  
2021 ◽  
Vol 31 ◽  
pp. 395-405
Author(s):  
Arsalan Alavi ◽  
Elena Mele ◽  
Reza Rahgozar ◽  
Ehsan Noroozinejad Farsangi ◽  
Izuru Takewaki ◽  
...  

2013 ◽  
Vol 405-408 ◽  
pp. 1616-1622
Author(s):  
Guo Hui Cao ◽  
Jia Xing Hu ◽  
Kai Zhang ◽  
Min He

In order to research on mechanical properties of flexible suspension bridges, a geometric nonlinear analysis method was used to simulate on the experimental results, and carried on static loading test finally. In the loading test process, the deformations were measured in critical section of the suspension bridge, and displacement values of measured are compared with simulation values of the finite element simulation. Meanwhile the deformations of the main cable sag are observed under classification loading, the results show that the main cable sag increment is basically linear relationship with the increment of mid-span loading and tension from 3L/8 and 5L/8 to L/2 section, the main cable that increasing unit sag required mid-span loads and tension are gradually reduce in near L/4 and 3L/4 sections and gradually increase in near L/8 and 7L/8 sections and almost equal in near L/2, 3L/8 and 5L/8 sections. From the experimental results, the flexible suspension bridge possess good mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document