High-Cycle Fatigue P-S-N Curve Estimating Method Based on Maximum Likelihood Method for Turbine Coupling Bolt Materials

2014 ◽  
Vol 541-542 ◽  
pp. 592-598 ◽  
Author(s):  
Yu Jiong Gu ◽  
Tie Zheng Jin ◽  
Hai Dong Zu ◽  
Jing Xu ◽  
Dong Chao Chen

The tensile fatigue tests and S-N curve fitting results of the coupling bolt material 25CrMo were given in this paper. It has been proved that the high-cycle fatigue properties of the bolt material can be accurately described by the three-parameter exponential S-N curve model by comparing the fitting results based on different S-N curve models. The fatigue limit of the high-cycle P-S-N curve calculated by the traditional maximum likelihood method was proved to have a high probability of being higher than the accurate fatigue limit. Therefore, a modified method based on maximum likelihood method was proposed so as to calculate the high-cycle P-S-N curve more accurately. The P-S-N of 25CrMo calculated using the modified method was given in this paper.

2011 ◽  
Vol 295-297 ◽  
pp. 2386-2389 ◽  
Author(s):  
Ren Hui Tian ◽  
Qiao Lin Ouyang ◽  
Qing Yuan Wang

In order to investigate the effect of plasma nitriding treatment on fatigue behavior of titanium alloys, very high cycle fatigue tests were carried out for Ti-6Al-4V alloy using an ultrasonic fatigue machine under load control conditions for stress ratios of R=-1 at frequency of ƒ=20KHz. Experiment results showed that plasma nitriding treatment played the principal role in the internal fatigue crack initiation. More importantly, plasma nitriding treatment had a detrimental effect on fatigue properties of the investigated Ti-6Al-4V alloy, and the fatigue strength of material after plasma nitriding treatment appeared to be significantly reduced about 17% over the untreated material.


2018 ◽  
Vol 916 ◽  
pp. 166-169
Author(s):  
Ilhamdi ◽  
Toshifumi Kakiuchi ◽  
Hiromi Miura ◽  
Yoshihiko Uematsu

Tension-tension fatigue tests were conducted using ultrafine-grained commercially pure Titanium (Ti) plates fabricated by multi-directional forging (MDFing). The MDFed pure Ti plates with the thickness of 1 mm were developed aiming at dental implant application. The fatigue properties of MDFed pure Ti plates were superior to those of the conventional rolled pure Ti plates. The higher fatigue strengths in MDFed plates could be attributed to the much finer grains evolved by MDFing. Fatigue crack initiated from specimen surface, when number of cycles to failure was shorter than 106 cycles. In the high cycle fatigue (HCF) region, however, subsurface crack initiation with typical fish-eye feature was recognized in the MDFed pure Ti plate in spite of the thin thickness. Fractographic analyses revealed that no inclusion existed at the center of fish-eye. The subsurface crack initiation mechanism could be related to the inhomogeneity of microstructure with some coarse grains in the inner part of the plate.


2007 ◽  
Vol 546-549 ◽  
pp. 1535-1540 ◽  
Author(s):  
Li Ying Zeng ◽  
Yong Qing Zhao ◽  
Xiao Nan Mao ◽  
Yun Lian Qi

Tensile and high cycle fatigue (HCF) property for TiC particle reinforced titanium matrix composite has been studied in this paper. The results indicated that the composite possessed favorite comprehensive properties. The tensile properties for the composite are superior to that of the common high temperature titanium alloys, e.g. IMI834, Ti-1100. Smooth axial fatigue tests were taken at a frequency of 76Hz with a load ratio R of 0.06 and –1, respectively. And HCF strength for the composite at ambient temperature is 595MPa and 494MPa, respectively.


2006 ◽  
Vol 49 ◽  
pp. 91-96 ◽  
Author(s):  
György Ring ◽  
Eszter Bognár ◽  
János Dobránszky ◽  
János Ginsztler ◽  
László Major

The role of the stents is to prevent restenosis. The rapid growth of stents’ application in the treatment of cardiovascular diseases resulted in the unique development of these implants. This is mainly due to the effective clinical trials, the success of which determined the use of these endoprostheses. In this study the surface properties of the coronary stents were described by using different methods (stereomicroscopy, scanning electron microscopy and energy dispersive analysis) before and after balloon expansion. Furthermore, the most frequent failures caused by the expansion were introduced. For investigating fatigue properties two high cycle fatigue test equipments were used: the first one simulates the bending stress, and the second one simulates the effect of the pulsating mechanical strain. Surface features of the stents were examined after the fatigue tests as well: macroscopic damages were not originated on the stents, and the implants were not broken down. Only small traces of fatigue occurred on the surface, which became rough; and slip lines and grain boundaries were outlined.


2021 ◽  
Vol 63 (8) ◽  
pp. 714-720
Author(s):  
Klaus Störzel ◽  
Jörg Baumgartner

Abstract The statistical evaluation of fatigue tests can be carried out using the maximum likelihood method. With this method, the influence of run-outs on the S-N curve can be statistically considered. Typically, a bilinear S-N curve (Wöhler curve) in double-logarithmic representation is used. The logarithmic normal distribution is the basis for describing the scatter, which is assumed here to be independent of the number of cycles. For parameter determination via the maximum likelihood method, reliability is examined and compared with the evaluation methods proposed in DIN 50100. While a defined test procedure is required for the application of DIN 50100, any test data can be evaluated according to the maximum likelihood method. In comparison with the methods proposed in DIN 50100, it could be shown through some examples that the maximum likelihood method yields very reliable results for all S-N curve parameters.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 964
Author(s):  
Yoshihiko Uematsu ◽  
Toshifumi Kakiuchi ◽  
Yaodong Han ◽  
Masaki Nakajima

Cantilever-type rotating bending fatigue tests were conducted under a very high cycle fatigue regime using conventionally manufactured Ti-6Al-4V specimens having drilled artificial defects with different sizes. The relationship between fatigue limit and defect size was defined as a fatigue limit design curve considering the transition from the fracture-mechanics dominating area to the fatigue-limit dominating area. A conventional Murakami’s equation was applicable as a design curve of additively manufactured Ti-6Al-4V with defects at 107 cycles. However, conventional equation gave un-conservative predictions for the fatigue limit at 108 cycles. Therefore, two kinds of modified Murakami’s equation were proposed as fatigue limit design curves for the very high cycle fatigue regime. Simple parallel shift of Murakami’s equation gave a conservative fatigue limit, whilst better result was obtained by changing the slope of Murakami’s equation. The proposed design curve was valid for the defect sizes ranging from 10 to 500 μm.


Author(s):  
Yoshiaki Matsumori ◽  
Jumpei Nemoto ◽  
Yuji Ichikawa ◽  
Isamu Nonaka ◽  
Hideo Miura

Since high-cycle fatigue loads is applied to the pipes in various energy and chemical plants due to the vibration and frequent temperature change of fluid in the pipes, the high-cycle fatigue behavior of the alloys used for pipes should be understood quantitatively in the structural reliability design of the pipes. The purpose of this study, therefore, is to clarify the high-cycle fatigue strength and fracture mechanism of the modified 9Cr-1Mo steel at temperatures higher than 400°C. This material is one of the effective candidates for the pipes in fast breeder demonstration reactor systems. A rotating bending fatigue test was applied to samples at 50 Hz in air. The stress waveform was sinusoidal and the stress ratio was fixed at −1. The fatigue limit was observed at room temperature and it was about 420 MPa. This value was lower than the 0.2% proof stress of this alloy by about 60 MPa. This decrease can be attributed to the cyclic softening of this material. The limited cycles at knee point was about 8×105 cycles. All fracture was initiated from a single surface crack and no inclusion-induced fracture was observed in the fracture surface by SEM. Thus, the high-cycle fatigue design based on the fatigue limit may be applicable to the modified 9Cr-1Mo steel at room temperature. The fatigue limit of about 350 MPa was also observed at 400°C, and it appeared at about 107 cycles, while it appeared at around 106 cycles at room temperature. Thus, it was confirmed that the fatigue strength of this alloy decrease with temperature. However, the fatigue limit didn’t appear at 550°C up to 108 cycles. The fatigue limit may disappear in this alloy at 550°C. It is very important, therefore, to evaluate the ultra-high cycle fatigue strength of this alloy at temperatures higher than 400°C.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 232
Author(s):  
Wei Wei ◽  
Cheng Li ◽  
Yibo Sun ◽  
Hongji Xu ◽  
Xinhua Yang

In this study, we investigated the fatigue behavior of Q460 welded joints using tensile fatigue tests. Furthermore, real-time temperature profiles of the examined specimens were recorded by infrared thermography. Based on the obtained thermographic data, we calculated the entropy production rate of the specimens under different stress amplitudes. Hypothetically, the entropy production during high-cycle fatigue (HCF) could be divided into two parts. The first is induced by inelastic behavior that corresponds to damage accumulation, and the second originates from anelasticity associated with recoverable non-damaging microstructural motions. The turning point of entropy production under different stress levels represents an index for fatigue limit estimation. Then, considering the average damage threshold that exists during HCF, the entropy production related to damage accumulation (cumulative damage entropy) is obtained by testing three specimens under the same stress amplitude above the fatigue limit. Finally, a rapid three-parameter S-N curve with a survival probability rate of 50% is obtained. Then, combined with the maximum likelihood method, the 5% and 95% survival probability rate S-N curves are established. Most of experimental data are distributed in the area between S-N curves that correspond to 5% and 95% survival probability rate, indicating good accordance with the test data.


Sign in / Sign up

Export Citation Format

Share Document