The Combined Solar with a Dual Heat Source Heat Pump Applied in a Greenhouse Heating System - An Operation Optimization of Water Source Heat Pump

2014 ◽  
Vol 541-542 ◽  
pp. 942-948
Author(s):  
Xian Peng Sun ◽  
Zhi Rong Zou ◽  
Yue Zhang

Based on the finite-time thermodynamic theory, an operation optimization, of water source heat pump in the combined solar with a dual heat source heat pump which is applied in a greenhouse heating system, is made. According to the ε-NTU method and entropy theory, heat exchange and balance equations are obtained. The function relationship between COP and the indoor temperature Tn, the ambient temperature Ta, low temperature heat source inlet temperature Tie and high temperature heat source inlet temperature Tic is also obtained. By means of programming, the impact of parameters on the COP and the way of regulating this water source heat pump system are presented in this article. The results show that: when a separate water source heat pump is running, by adjusting the hot water temperature and the match status of each indoor heating system, the energy-saving operation can be realized.

2014 ◽  
Vol 521 ◽  
pp. 56-59
Author(s):  
Hui Xing Li ◽  
Peng Cheng ◽  
Guo Hui Feng ◽  
Ran Zhang

New energy development and utilization is an important approach to solve the problem of energy shortage,a new type of composite heating system is proposed in this study. It expounds the research ideas, the technical principle and operation plan of the system. Through a comparative analysis of the performance coefficient of composite heating system, reclaimed water source heat pump system and solar hot water heating system, it Comes to the conclusions that the composite heating system can not only reduce the operating cost but also improve the running performance of reclaimed water source heat pump and reduce the heat loss of solar hot water heating system.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Yongqiang Liu ◽  
Zhanfang Huang

A building heating system had high energy consumption and did not meet the requirements of environmental protection, so it was needed to be reformed. After recalculating the heat load, it was found that the heat source, pipe network specification, and radiator area of the original heating system were oversized. After comparing with a gas-fired boiler, the heat source was transformed into the water source heat pump system. The water supply temperature of the water source heat pump was lower than that of the boiler. Generally, it seemed necessary to increase the radiator area. However, after calculation and verification, when the supply and return water temperature was 65/58°C, the system operated continuously and the original pipe network and radiator could still ensure the indoor temperature of 16°C. The total cost of transformation was 11.5 million Chinese Yuan. After analyzing the operation data of the new system, the water source heat pump system could save 82.6% energy compared with the original system and 29.6% cost compared with the central heating system. The transformation is successful, and the experience is worth popularizing.


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Maarten G. Sourbron ◽  
Nesrin Ozalp

With reducing energy demand and required installed mechanical system power of modern residences, alternate heat pump system configurations with a possible increased economic viability emerge. Against this background, this paper presents a numerically examined energy feasibility study of a solar driven heat pump system for a low energy residence in a moderate climate, where a covered flat plate solar collector served as the sole low temperature heat source. A parametric study on the ambient-to-solarfluid heat transfer coefficient was conducted to determine the required solar collector heat transfer characteristics in this system setup. Moreover, solar collector area and storage tank volume were varied to investigate their impact on the system performance. A new performance indicator “availability” was defined to assess the contribution of the solar collector as low temperature energy source of the heat pump. Results showed that the use of a solar collector as low temperature heat source was feasible if its heat transfer rate (UA-value) was 200 W/K or higher. Achieving this value with a realistic solar collector area (A-value) required an increase of the overall ambient-to-solarfluid heat transfer coefficient (U-value) with a factor 6–8 compared to the base case with heat exchange between covered solar collector and ambient.


2014 ◽  
Vol 953-954 ◽  
pp. 650-654
Author(s):  
Chao Yi Tan ◽  
Hui Zhu ◽  
Hai Hua Hu ◽  
Meng Meng Wang ◽  
Han Qing Wang

Taking the geothermal heat pump system in the campus of Hunan University of Technology for example, three technical solutions of the heat source of the system were analyzed in terms of the condensing heat load, the annual unbalanced heat load and the energy efficiency ratio (EER) of the system. In addition, comparison was conducted among the solutions. The results indicate that the solution 3, which has a cold and hot water integrative unit and hot water unit connected in series, meanwhile has a cooling tower for auxiliary cooling, shows better performance among all the solutions. The analysis on the solution of heat source of geothermal heat pump system, which usually contains the analysis on the condensing heat load, annual unbalanced heat load and EER, is of great significance for the design and development of the geothermal heat pump system with lower coat and higher EER.


Solar Energy ◽  
2005 ◽  
Author(s):  
Ronghua Wu ◽  
Chenghu Zhang ◽  
Dexing Sun

The integrated low and high temperature heating water system consists of heat pump heat source and boiler heat source. The heat pump heat source abstract heat from low temperature heat source and produce hot water up to 65°C. During mild weather, the 65°C hot water is sufficient for building heating. During cold weather conditions, the boiler heat source will have to be used to produce hot water at 90°C or higher to satisfy the building comfort. To improve the system economy, the integrated system has to maximize the use of the low temperature heat source since it is free. This paper presents a theoretical models and analysis to optimize the system design parameters.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5211 ◽  
Author(s):  
Hongkyo Kim ◽  
Yujin Nam ◽  
Sangmu Bae ◽  
Soolyeon Cho

Various efforts have been made worldwide to reduce energy use for heating, ventilation, and air-conditioning (HVAC) systems and lower carbon dioxide (CO2) emissions. Research and development are essential to ensuring the efficient use of renewable energy systems. This study proposes a multiple sources and multiple uses heat pump (MMHP) system that can efficiently respond to heating, cooling, and domestic hot water (DHW) loads using multiple natural heat sources. The MMHP system uses ground and air heat as its primary heat sources and solar heat for heat storage operations and ground temperature recovery. For the efficient use of each heat source, it also determines the heat source required for operation by comparing the heat source temperatures in the same time zone. A model for predicting the heat source temperatures, electricity use, and coefficient of performance (COP) was constructed through simulation. To analyze the efficiency of the proposed system by comparing the existing air source heat pump with ground source heat pump systems, a performance analysis was conducted by setting regional and system configurations as case conditions. The results demonstrate that the electricity use of the MMHP system was 13–19% and 1–3% lower than those of air source heat pump (ASHP) and ground source (GSHP) systems, respectively. In addition, the MMHP system was the most favorable in regions with a low heating load.


2020 ◽  
Vol 12 (24) ◽  
pp. 10521
Author(s):  
Mariusz Szreder ◽  
Marek Miara

A standard Polish household with a central heating system powered by a solid fuel furnace was chosen as a case study. The modular Air Source Heat Pump (ASHP) was used to heat the hot water outside the heating season. In this article comparative studies of the impact of the compressor drive system used on the energy efficiency of the heat pump have been carried out in operating conditions. The ASHP heating capacity and coefficient of performance (COP) were determined for the outside air temperature in the range from 7 to 22 °C by heating the water in the tank to a temperature above 50 °C. For the case of a fixed speed compressor, average heating capacity in the range 2.7−3.1 kW and COP values in the range 3.2−4.6 depending on the evaporator supply air temperature were obtained. Similarly, for the inverter compressor, the average heating capacity in the range of 2.7−5.1 kW was obtained for the frequency in the range of 30–90 Hz and COP in the range 4.2−5.7, respectively. On cool days, the average heating capacity of the heat pump decreases by 12%. For the simultaneous operation of two compressors with comparable heating capacity, lower COP values were obtained by 20%.


2011 ◽  
Vol 71-78 ◽  
pp. 2136-2141
Author(s):  
Wang Fu ◽  
Li Ying Sun

Application of heat pump technology is a effective way to achieve energy saving and emission reduction.In order to propose the heat pump system suitable for marine air conditioning,this paper takes a bulk carrier as the research object,calculates the annual dynamic cool and heat loads of ship,proposes five kinds of cold and heat source optional schemes and selects the equipments.On this basis,five optional schemes are evaluated by using the method of AHP from the following aspects:economic, energy consumption, environment, weight and size.The result shows that comprehensive properties of adopting double stage coupling water source heat pump in ship are better than other schemes.


2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Zi-ping Zhang ◽  
Fang-hui Du

This work describes a large reclaimed water source heat pump system (RWSHPS) and elaborates on the composition of the system and its design principles. According to the characteristics of the reclaimed water and taking into account the initial investment, the project is divided into two stages: the first stage adopts distributed heat pump heating system and the second adopts the combination of centralized and decentralized systems. We analyze the heating capacity of the RWSHPS, when the phase II project is completed, the system can provide hydronic heating water with the supply and return water temperature of 55°C/15°C and meet the hydronic heating demand of 8 million square meters of residential buildings. We make a thermal economics analysis by using Thermal Economics theory on RWSHPS and gas boiler system, it is known that the RWSHPS has more advantages, compared with the gas boiler heating system; both its thermal efficiency and economic efficiency are relatively high. It provides a reference for future applications of the RWSHPS.


Sign in / Sign up

Export Citation Format

Share Document