The Motion Characteristics and Pressure Analysis of Drive System of Monorail Crane

2014 ◽  
Vol 556-562 ◽  
pp. 1377-1379
Author(s):  
Yu Chen ◽  
Wen Peng Wei ◽  
Qing Peng Gao

This article mainly on monorail crane motion characteristics of three different kinds of drive systems and pressure analysis of I-steel. The motion characteristics figure of hydraulic step cylinder drive system, friction wheel drive system, rack-and-pinion drive system are done by Solidworks Motion module. The I-steel pressure analysis of different drive systems is done by the Ansys Workbench module. By analyzing and comparing the figures, the rack-and-pinion drive system has a superior property in both motion characteristics and pressure of I-steel.

2015 ◽  
Vol 36 (1) ◽  
pp. 65-78
Author(s):  
Mariusz Kowalski

Abstract The paper shows a typical drive systems used in today's vehicles, mainly cars. Approximated scheme of the formation of the driving force of the vehicle and the necessary mathematical relations for the calculation. For example, a typical passenger car BMW 320 was analyzed and calculations obtained a driving force, of adhesion and acceleration. The calculations were performed for the drive system, the classical (i.e. the rear axle of the vehicle) for front-wheel drive and four-wheel drive (4×4). Virtually assumed that to the above mentioned vehicle it is possible buildings of each of said system. These are shown graphically in diagrams bearing a distribution of the forces acting on the substrate and the reactions - the data necessary for the calculations. The resulting calculation is graphically shown in the diagrams, in which is illustrated a change value of the resulting adhesive strength, and the acceleration depending on the drive type vehicle.


2014 ◽  
Vol 607 ◽  
pp. 458-466 ◽  
Author(s):  
Wei Wang ◽  
Yan Li ◽  
Shan Zhang ◽  
Bin Wang

Based on double trailing arm suspension, relating to two-wheel-drive structures with inhibition of vertical vibration: a motor-integrated electric wheel-drive system and an electric wheel-drive system of which the motor can swing up and down and act as a dynamic absorber. In the paper a unified differential equation of motion of the two electric wheel drive systems was deduced, and Matlab and Adams were applied to simulate and analyze the ride comfort of the two drive systems. The analysis results show that compared to the traditional In-Wheel Motor Driven EV, the vertical acceleration of the car body of either of the two drive systems is lower, which significantly increases the ride comfort of car. Between the two electric wheel-drive systems, the latter system with dynamic absorber motor is more efficient to inhibit vertical vibration.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7524
Author(s):  
Piotr Szewczyk ◽  
Andrzej Łebkowski

This article presents the results of energy consumption research for an electric light commercial vehicle (eLCV) powered by a centrally located motor (4 × 2 drive system) or motors placed in the vehicle’s wheels (4 × 4 drive system). For the considered constructions of electric drive systems, mathematical models of 4 × 2 and 4 × 4 drive systems were developed in the Modelica simulation environment, based on real data. Additionally, the influence of changes in the vehicle loading condition on the operation of the motor mounted in the wheel and the energy consumption of the drive module was investigated. On the basis of the conducted research, a comparative analysis of energy consumption by electric drive systems in 4 × 2 and 4 × 4 configurations was carried out for selected test cycles. The tests carried out with the Worldwide harmonized Light vehicles Test Cycles (WLTC) test cycle showed a roughly 6% lower energy consumption by the 4 × 4 drive system compared to the 4 × 2 configuration.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3626 ◽  
Author(s):  
Wojciech Pietrowski ◽  
Konrad Górny

Despite the increasing popularity of permanent magnet synchronous machines, induction motors (IM) are still the most frequently used electrical machines in commercial applications. Ensuring a failure-free operation of IM motivates research aimed at the development of effective methods of monitoring and diagnostic of electrical machines. The presented paper deals with diagnostics of an IM with failure of an inter-turn short-circuit in a stator winding. As this type of failure commonly does not lead immediately to exclusion of a drive system, an early stage diagnosis of inter-turn short-circuit enables preventive maintenance and reduce the costs of a whole drive system failure. In the proposed approach, the early diagnostics of IM with the inter-turn short-circuit is based on the analysis of an electromagnetic torque waveform. The research is based on an elaborated numerical field–circuit model of IM. In the presented model, the inter-turn short-circuit in the selected winding has been accounted for. As the short-circuit between the turns can occur in different locations in coils of winding, computations were carried out for various quantity of shorted turns in the winding. The performed analysis of impact of inter-turn short-circuit on torque waveforms allowed to find the correlation between the quantity of shorted turns and torque ripple level. This correlation can be used as input into the first layer of an artificial neural network in early and noninvasive diagnostics of drive systems.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5727
Author(s):  
Michał Michna ◽  
Filip Kutt ◽  
Łukasz Sienkiewicz ◽  
Roland Ryndzionek ◽  
Grzegorz Kostro ◽  
...  

In this paper, the static and dynamic simulations, and mechanical-level Hardware-In-the-Loop (MHIL) laboratory testing methodology of prototype drive systems with energy-saving permanent-magnet electric motors, intended for use in modern construction cranes is proposed and described. This research was aimed at designing and constructing a new type of tower crane by Krupiński Cranes Company. The described research stage was necessary for validation of the selection of the drive system elements and confirmation of its compliance with applicable standards. The mechanical construction of the crane was not completed and unavailable at the time of testing. A verification of drive system parameters had to be performed in MHIL laboratory testing, in which it would be possible to simulate torque acting on the motor shaft. It was shown that the HIL simulation for a crane may be accurate and an effective approach in the development phase. The experimental tests of selected operating cycles of prototype crane drives were carried out. Experimental research was performed in the LINTE^2 laboratory of the Gdańsk University of Technology (Poland), where the MHIL simulator was developed. The most important component of the system was the dynamometer and its control system. Specialized software to control the dynamometer and to emulate the load subjected to the crane was developed. A series of tests related to electric motor environmental parameters was carried out.


2012 ◽  
Vol 614-615 ◽  
pp. 1558-1561
Author(s):  
Wen Wei Han ◽  
Wei Shi Han ◽  
Qing Guo

This article has systematically summarized the recent research situation of control rod system in China and comparatively analyzed the features of a variety of control rod drive systems on a basis of brief introduction of common types of control rod drive system. It has been proposed to that the hydraulic control rod drive system have a great potential in a wide application concerning on ships, warships power reactors and protable desalination system.


Author(s):  
S G Velonias ◽  
N A Aspragathos

This paper investigates some of the effects that structural characteristics and main non-linearities of a drive system have on systems response and its shaft fatigue. In the suggested approach a general drive system, including a motor, load and speed reducers, is modelled as a multi-degree-of-freedom torsional vibrations non-linear system. The differential equations of the system are formed automatically. The user of the developed program must input just the constants of the components. An algorithm to compute the loss of life of the shafts due to fatigue is also incorporated into the program. As an example, a drive system, including a motor, a speed reducer and load is modelled and tested under starting conditions. The effects of changing spring constants of the shafts and the backlash of the speed reducer are investigated.


2021 ◽  
Author(s):  
shuang wang ◽  
Yongcun GUO ◽  
Deyong LI

Abstract This study provides a new permanent magnetic eddy current drive system to solve the ener-gy-saving drive problem of the scraper conveyor working under bad conditions, including overload startup, severe abrasion and pollution. Considering the practical conveying conditions of the scraper chain on a fully mechanised coal mining face, this study creates a mathematical model for the new permanent magnetic eddy current drive system of the scraper conveyor based on its characteristics and indicates the motion characteristics of the scraper chain driven by two wheels. This study verifies the model accuracy with a pre-startup technology depending on the scraper conveyor on the No. 12318 working face of the 8th coal mine in the West No. 1 mining area of the Pansan Coal Mine of the Huainan Mining Group. According to the results, the motion acceleration of the scraper chain based on the new permanent magnetic eddy current drive is lower than that of the scraper chain with a hydraulic coupler under the same running condition and load during startup and acceleration and declines by approximately 14.7%. Consequently, this can decline the startup impact due to the serious abrasion and frequent overload of the scraper chain working under bad conditions.


1974 ◽  
Vol 96 (3) ◽  
pp. 752-760
Author(s):  
O. Wichern
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document