Optimization Design of EMU Process Bogie Wheel Frame Based on ANSYS

2014 ◽  
Vol 556-562 ◽  
pp. 1446-1449
Author(s):  
Jun Dai

According to the saw blade for process bogie structure characteristics,the use of Pro /E 3 d software based on the 3 d model,with ANSYS software,a static and modal analysis,obtained the stress pattern,structure deformation diagram and the former 6 order natural frequency and modal shape. The analysis results show that the node the maximum equivalent stress and the maximal displacement nodes are within the scope of the provisions,the data are meet the requirements,frame structure overall stiffness is better,frame has good static characteristic and dynamic characteristic,can meet the design requirements.And on this basis to frame was further optimized,so as to save materials,reduce cost.The theoretical basis is provided for the development of the process bogie .

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bin Zheng ◽  
Yi Cai ◽  
Kelun Tang

Purpose The purpose of this paper is to realize the lightweight of connecting rod and meet the requirements of low energy consumption and vibration. Based on the structural design of the original connecting rod, the finite element analysis was conducted to reduce the weight and increase the natural frequencies, so as to reduce materials consumption and improve the energy efficiency of internal combustion engine. Design/methodology/approach The finite element analysis, structural optimization design and topology optimization of the connecting rod are applied. Efficient hybrid method is deployed: static and modal analysis; and structure re-design of the connecting rod based on topology optimization. Findings After the optimization of the connecting rod, the weight is reduced from 1.7907 to 1.4875 kg, with a reduction of 16.93%. The maximum equivalent stress of the optimized connecting rod is 183.97 MPa and that of the original structure is 217.18 MPa, with the reduction of 15.62%. The first, second and third natural frequencies of the optimized connecting rod are increased by 8.89%, 8.85% and 11.09%, respectively. Through the finite element analysis and based on the lightweight, the maximum equivalent stress is reduced and the low-order natural frequency is increased. Originality/value This paper presents an optimization method on the connecting rod structure. Based on the statics and modal analysis of the connecting rod and combined with the topology optimization, the size of the connecting rod is improved, and the static and dynamic characteristics of the optimized connecting rod are improved.


2014 ◽  
Vol 709 ◽  
pp. 176-179
Author(s):  
Han Liu ◽  
Fang Zhen Song ◽  
Ming Ming Li ◽  
Bo Song

The problem is solved that it is hard to provide analysis formulas about the maximum equivalent stress, the maximum shear stress and the structural geometric parameters for a ship. The finite element calculation is done with orthogonal experimental design under the most dangerous case. The data obtained are used as the training and test samples to establish BP neural network models of ship’s maximum equivalent stress and maximum shear stress. With the aid of Neural network toolbox in MATLAB, the topological structure of BP neural network mapping relationship between the whole ship performance indexes and design variables is established. The training and testing are completed with the data tested by the shipyard and the correctness of this network is verified. The neural network required for further optimization design is obtained. The neural network is helpful in reducing the ship mass without exceeding the allowable stress.


2014 ◽  
Vol 945-949 ◽  
pp. 190-193
Author(s):  
Hai Lin Wang ◽  
Yi Hua Sun ◽  
Ming Bo Li ◽  
Gao Lin ◽  
Yun Qi Feng ◽  
...  

Q43Y-85D type crocodile hydraulic clipping machine was taken as research object to optimization design. A finite element model for clipping machine was built using shell unit as fundamental unit. ANSYS12.0 finite element method was used to analyze the deformation and stress distribution of the shear platform model of hydraulic clipping machine. The result showed that the maximum equivalent stress at the dangerous area was 368.162 MPa and the maximum elastic strain was 0.1814×10-2 mm. After the structural optimization design, it was found that the maximum equivalent stress decreased to 186.238 MPa which did not exceed the material’s yield limitation 215 MPa and the maximum elastic strain decreased to 0.919×10-3 mm which satisfied the requirement of stiffness.


2021 ◽  
Vol 11 (20) ◽  
pp. 9584
Author(s):  
Weihua Wei ◽  
Fangxu Peng ◽  
Yingli Li ◽  
Bingrui Chen ◽  
Yiqi Xu ◽  
...  

Firstly, the force of an extrusion roller under actual working condition was analyzed while the contact stress between the roller shaft and the roller sleeve and the extrusion force between the roller sleeve and the material were calculated. Secondly, static analysis of the extrusion roller was carried out using ANSYS software, and conclusively, the stress concentration appears at the roller sleeve’s inner ring step. Furthermore, an optimization scheme of the setting transition arc at the step of the contact surface between roller shaft and roller sleeve was proposed, and a simulation test was carried out., Finally, the maximum equivalent stress of the extrusion roller was set at the minimum value of the objective function; the extrusion roller was further optimized by using the direct optimization module in ANSYS Workbench. The results from optimization show that the maximum equivalent stress is reduced by 29% and the maximum deformation is decreased by 28%. It can be seen that the optimization scheme meets the strength and deformation requirements of the extrusion roller design. The optimization scheme can effectively improve the bearing capacity of the extrusion roller and reduce its production cost. This can provide a reference for the design of the roller press.


2021 ◽  
Vol 2117 (1) ◽  
pp. 012036
Author(s):  
E Marliana ◽  
G P Utomo ◽  
S Fuad ◽  
A A Arifin

Abstract The static analysis of a copper roller shaft is performed. The copper roller shaft consists of bushing, pen roll and roller. All of those components g4bconsist of different materials. Thermal steady state and statical analysis is performed in order to investigate the thermal effect of high temperature copper slab on the roller shaft. The copper slab temperature is 1200 OC. Based on this work obtained that the maximum total deformation is 0.0050523 m, maximum equivalent stress is 41600 MPa, maximum life cycle is 1011, total heat flux maximum is 879910 W/m2 and the maximum damage occur in the pen roll component.


2011 ◽  
Vol 314-316 ◽  
pp. 657-660
Author(s):  
Jian Min Chen ◽  
Meng Zhang ◽  
Jia Deng

The paper firstly numerically simulates the coupled model of triangle fastening screw threads in the application of ANSYS software. Calculate stress intensity of the screw thread on the axial pressure of 200MPa. The fittest coupled turn number of the screw nut is designed to make sure the strength of coupled teeth and make every turn of the screw thread go on very well and also save material. The maximum equivalent stress of the screw thread changes linearly with the axial pressure. The stress of the thread's root is greater than that of the thread's top so that the root is easily damaged. The paper's research method can apply to the optimal design of the other patterns of screw thread's turn number.


2011 ◽  
Vol 130-134 ◽  
pp. 887-890
Author(s):  
Yun Feng Zhang ◽  
Zhen Nan Qi ◽  
Xi Ying Lang ◽  
Min Zhao

The structure reliability of the diamond saw blade in milling process is studied. With probability design features of ANSYS, take the flange diameter ,thickness, diameter of the diamond saw blade and load suffered in the milling process as input variables, and take the maximum equivalent stress of dangerous parts of the diamond saw blades stress as output variable. The diamond saw blade structure reliability is analysed using Monte Carlo method and the maximum equivalent stress value cumulative distribution and dangerous parts of various parameters on the distribution of the maximum equivalent stress sensitivity under the impact of the load are got. The result provides a theoretical basis for improving the parameters of diamond saw blade and has the significant practical and theoretical value for the stone processing theory and diamond saw blade study.


2013 ◽  
Vol 303-306 ◽  
pp. 2724-2726
Author(s):  
Xue Qiang Liu ◽  
Jian Chun Zhang ◽  
Hao Zhang ◽  
Xin Hu

The distribution of maximum equivalent stress on hemp stalks at different roller speeds were scavenged by LS-PREPOST function. The stress and strain distributions of hemp stalk under the transversely even-distributed load are analyzed through ANSYS software. The results show that hemp decortication largely depended on the rotation speed of separation roller and the feeding rate. In addition, the failure degree of bast fiber, the maturity and the water content of the stalk, and the difference in mechanical properties and geometrical size should be also taken into account.


2014 ◽  
Vol 711 ◽  
pp. 96-99
Author(s):  
Han Liu ◽  
Fang Zhen Song ◽  
Ming Ming Li ◽  
Bo Song

The basic principle of sequential quadratic programming method and the concrete implementation steps in MATLAB are expounded. Sequential quadratic programming method is used for the cabin structure optimization. In the optimization, the minimal sizes of components stipulated by the rules are used as size constraints, the frequencies required by the rules are used as performance constraints and the minimum lightness of the ship are used as objective. Finite element analysis of the ship structure optimized is done and the results obtained show that both the maximum equivalent stress and the maximum shear stress meet the requirements and first three order frequencies of the cabin structure are also far away from the working frequency of propeller and host. The optimization reduces the weight of the cabin under the condition of meet the static characteristic and dynamic characteristic.


2018 ◽  
Vol 38 ◽  
pp. 04006 ◽  
Author(s):  
Xiaoyan Gong ◽  
Ying Li ◽  
Yongqiang Zhang

In view of the enlargement of fully mechanized face excavation and long distance driving, gas emission and dust production increase greatly. However, the current ventilation device direction angle, caliber and front-back distance cannot change dynamically at any time, resulting in the serious accumulation in the dead zone. In this paper, a new device were proposed that can solve above problems. Finite element ANSYS software were used to simulate and optimize the structural safety of the control device' key components. The optimization results showed that the equivalent stress decreases by 49%; after the optimization of deformation and mass are 0.829mm and 0.548kg, which were 21% and 10% lower than before.The quality, safety, reliability and cost of the control device reach the expected standards perfectly, which can meet the requirements of safe ventilation and down-dusting of fully mechanized face.


Sign in / Sign up

Export Citation Format

Share Document