Bioreactor Control Using Fuzzy Logic Controllers

2014 ◽  
Vol 573 ◽  
pp. 291-296 ◽  
Author(s):  
N. Arulmozhi

Bioreactors are characterized by high nonlinearities and are often subjected to parameter uncertainties and disturbances. The control of such processes is often difficult to achieve with traditional linear control techniques. In the present work, a Fuzzy logic controller is designed in two versions to a Bioreactor which exhibits input multiplicities in dilution rate on productivity. Fuzzy controller and Fuzzy tuned PI controller is designed to translate the information obtained from the operator’s experiences for designing an automatic control system The Performance of proposed Fuzzy logic controller versions and conventional PI controller have been analyzed and evaluated. The two Fuzzy controller versions provide stable and faster responses than conventional PI controller. Thus, Fuzzy control is found to overcome the control problems of PI controller due to the input multiplicities near optimal productivity. It is interesting to note that the present fuzzy logic controller is giving superior performance. The process is tested with the MATLAB/SIMULINK and Fuzzy Logic Toolbox. The simulation results were presented which illustrate the validity of the method.

Author(s):  
Alvin Noer Ramadhan ◽  
Novie Ayub Windarko ◽  
Irianto Irianto

Medicines should be stored in a room at a suitable temperature if the inappropriate affect the quality of the drug. Therefore we need a control that can control the temperature in the room so that it is constant in accordance with the rules for room temperature in drug storage, which is 25 degrees Celsius. The following paperwork presents a simulation controller between PI controller and PI-Fuzzy logic controller in adjusting the voltage to match the set of point. Where the fuzzy logic controller automatically searches for the Kp value so that the voltage output of the converter match the desired set of point. Then the converter used is synchronoust boost converter as voltage regulator and peltier as a DC load which functions as a cooler. in this research, the system using  PI controller was able to adjust the voltage to match the set point with Kp is 0.14089 and Ki is 124.6738 then settling time is 0.016 s. While the system using PI-Fuzzy logic controller,it was able to adjust the voltage to match the set point with Kp is 0.08112 and Ki is 125.6738 then settling time is 0.014 s.


2011 ◽  
Vol 403-408 ◽  
pp. 5068-5075
Author(s):  
Fatma Zada ◽  
Shawket K. Guirguis ◽  
Walied M. Sead

In this study, a design methodology is introduced that blends the neural and fuzzy logic controllers in an intelligent way developing a new intelligent hybrid controller. In this design methodology, the fuzzy logic controller works in parallel with the neural controller and adjusting the output of the neural controller. The performance of our proposed controller is demonstrated on a motorized robot arm with disturbances. The simulation results shows that the new hybrid neural -fuzzy controller provides better system response in terms of transient and steady-state performance when compared to neural or fuzzy logic controller applications. The development and implementation of the proposed controller is done using the MATLAB/Simulink toolbox to illustrate the efficiency of the proposed method.


Author(s):  
Rajmeet Singh ◽  
Tarun Kumar Bera

AbstractThis work describes design and implementation of a navigation and obstacle avoidance controller using fuzzy logic for four-wheel mobile robot. The main contribution of this paper can be summarized in the fact that single fuzzy logic controller can be used for navigation as well as obstacle avoidance (static, dynamic and both) for dynamic model of four-wheel mobile robot. The bond graph is used to develop the dynamic model of mobile robot and then it is converted into SIMULINK block by using ‘S-function’ directly from SYMBOLS Shakti bond graph software library. The four-wheel mobile robot used in this work is equipped with DC motors, three ultrasonic sensors to measure the distance from the obstacles and optical encoders to provide the current position and speed. The three input membership functions (distance from target, angle and distance from obstacles) and two output membership functions (left wheel voltage and right wheel voltage) are considered in fuzzy logic controller. One hundred and sixty-two sets of rules are considered for motion control of the mobile robot. The different case studies are considered and are simulated using MATLAB-SIMULINK software platform to evaluate the performance of the controller. Simulation results show the performances of the navigation and obstacle avoidance fuzzy controller in terms of minimum travelled path for various cases.


2010 ◽  
Vol 2010 ◽  
pp. 1-20 ◽  
Author(s):  
Yi Fu ◽  
Howard Li ◽  
Mary Kaye

Autonomous road following is one of the major goals in intelligent vehicle applications. The development of an autonomous road following embedded system for intelligent vehicles is the focus of this paper. A fuzzy logic controller (FLC) is designed for vision-based autonomous road following. The stability analysis of this control system is addressed. Lyapunov's direct method is utilized to formulate a class of control laws that guarantee the convergence of the steering error. Certain requirements for the control laws are presented for designers to choose a suitable rule base for the fuzzy controller in order to make the system stable. Stability of the proposed fuzzy controller is guaranteed theoretically and also demonstrated by simulation studies and experiments. Simulations using the model of the four degree of freedom nonholonomic robotic vehicle are conducted to investigate the performance of the fuzzy controller. The proposed fuzzy controller can achieve the desired steering angle and make the robotic vehicle follow the road successfully. Experiments show that the developed intelligent vehicle is able to follow a mocked road autonomously.


Jurnal Teknik ◽  
2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Sumardi Sadi

DC motors are included in the category of motor types that are most widely used both in industrial environments, household appliances to children's toys. The development of control technology has also made many advances from conventional control to automatic control to intelligent control. Fuzzy logic is used as a control system, because this control process is relatively easy and flexible to design without involving complex mathematical models of the system to be controlled. The purpose of this research is to study and apply the fuzzy mamdani logic method to the Arduino uno microcontroller, to control the speed of a DC motor and to control the speed of the fan. The research method used is an experimental method. Global testing is divided into three, namely sensor testing, Pulse Width Modulation (PWM) testing and Mamdani fuzzy logic control testing. The fuzzy controller output is a control command given to the DC motor. In this DC motor control system using the Mamdani method and the control system is designed using two inputs in the form of Error and Delta Error. The two inputs will be processed by the fuzzy logic controller (FLC) to get the output value in the form of a PWM signal to control the DC motor. The results of this study indicate that the fuzzy logic control system with the Arduino uno microcontroller can control the rotational speed of the DC motor as desired.


2021 ◽  
Vol 297 ◽  
pp. 01033
Author(s):  
Iliass Rkik ◽  
Mohamed El khayat ◽  
Hafsa Hamidane ◽  
Abdelali Ed-Dahhak ◽  
Mohammed Guerbaoui ◽  
...  

This paper presents the modeling of an intelligent combined MPPT and Lead-Acid battery charger controller for standalone solar photovoltaic systems. It involves the control of a DC/DC buck converter through a control unit, which contains two cascaded fuzzy logic controllers (FLC), that adjusts the required duty cycle of the converter according to the state of charge and the three stage lead acid battery charging system. The first fuzzy logic controller (FLC1) consists of an MPPT controller to extract the maximum power produced by the PV array, while the second fuzzy controller (FLC2) is aimed to control the voltage across the battery to ensure the three stage charging approach. This solution of employing two distinct cascaded fuzzy controllers surmounts the drawbacks of the classical chargers in which the voltage provided to the lead acid battery is not constant owing to the effects of the MPPT control which can automatically damage the battery. Thus, the suggested control strategy has the benefit of extracting the full power against the PV array, avoiding battery damage incurred by variable MPPT voltage and increasing the battery’s lifespan.


Author(s):  
Amjed A. Al-mousa ◽  
Ali H. Nayfeh ◽  
Pushkin Kachroo

Abstract Rotary cranes (tower cranes) are common industrial structures that are used in building construction, factories, and harbors. These cranes are usually operated manually. With the size of these cranes becoming larger and the motion expected to be faster, the process of controlling them became difficult without using automatic control methods. In general, the movement of cranes has no prescribed path. Cranes have to be run under different operating conditions, which makes closed-loop control preferable. In this work a fuzzy logic controller is introduced with the idea of split-horizon; that is, fuzzy inference engines (FIE) are used for tracking the position and others are used for damping the load oscillations. The controller consists of two independent controllers: radial and rotational. Each of these controllers has two fuzzy inference engines (FTEs). Computer simulations are used to verify the performance of the controller. Three simulation cases are introduced: radial, compound, and damping. The results from the simulations show that the fuzzy controller is capable of keeping the load-oscillation angles small throughout the maneuvers while completing them in a relatively reasonable time.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abhishek Kumar Kashyap ◽  
Dayal R. Parhi

Purpose This paper aims to outline and implement a novel hybrid controller in humanoid robots to map an optimal path. The hybrid controller is designed using the Owl search algorithm (OSA) and Fuzzy logic. Design/methodology/approach The optimum steering angle (OS) is used to deal with the obstacle located in the workspace, which is the output of the hybrid OSA Fuzzy controller. It is obtained by feeding OSA's output, i.e. intermediate steering angle (IS), in fuzzy logic. It is obtained by supplying the distance of obstacles from all directions and target distance from the robot's present location. Findings The present research is based on the navigation of humanoid NAO in complicated workspaces. Therefore, various simulations are performed in a 3D simulator in different complicated workspaces. The validation of their outcomes is done using the various experiments in similar workspaces using the proposed controller. The comparison between their outcomes demonstrates an acceptable correlation. Ultimately, evaluating the proposed controller with another existing navigation approach indicates a significant improvement in performance. Originality/value A new framework is developed to guide humanoid NAO in complicated workspaces, which is hardly seen in the available literature. Inspection in simulation and experimental workspaces verifies the robustness of the designed navigational controller. Considering minimum error ranges and near collaboration, the findings from both frameworks are evaluated against each other in respect of specified navigational variables. Finally, concerning other present approaches, the designed controller is also examined, and major modifications in efficiency have been reported.


Author(s):  
Rambir Singh ◽  
Asheesh K. Singh ◽  
Rakesh K. Arya

This paper examines the size reduction of the fuzzy rule base without compromising the control characteristics of a fuzzy logic controller (FLC). A 49-rule FLC is approximated by a 4-rule simplest FLC using compensating factors. This approximated 4-rule FLC is implemented to control the shunt active power filter (APF), which is used for harmonic mitigation in source current. The proposed control methodology is less complex and computationally efficient due to significant reduction in the size of rule base. As a result, computational time and memory requirement are also reduced significantly. The control performance and harmonic compensation capability of proposed approximated 4-rule FLC based shunt APF is compared with the conventional PI controller and 49-rule FLC under randomly varying nonlinear loads. The simulation results presented under transient and steady state conditions show that dynamic performance of approximated simplest FLC is better than conventional PI controller and comparable with 49-rule FLC, while maintaining harmonic compensation within limits. Due to its effectiveness and reduced complexity, the proposed approximation methodology emerges out to be a suitable alternative for large rule FLC.


Sign in / Sign up

Export Citation Format

Share Document