Finite Element Analysis on Causes of Crack in Large Underground Garage

2014 ◽  
Vol 580-583 ◽  
pp. 1369-1376
Author(s):  
Bin Shu ◽  
Jian He Peng

The paper aims to solve the serious and regular crack problems in underground garage. ANSYS finite element software is applied to set up the overall finite element model on floor-foundation and foundation coupling beam-foundation soil in underground garage. Combined with engineering field detection, factors influencing underground garage floor like underground water level, soil expansion caused by water content change in expansive soil, soil poisson ratio, foundation settlement are taken into consideration to find out the causes of cracks. The study is expected to provide reference for similar cases in other projects.

2018 ◽  
Vol 29 (16) ◽  
pp. 3188-3198 ◽  
Author(s):  
Wissem Elkhal Letaief ◽  
Aroua Fathallah ◽  
Tarek Hassine ◽  
Fehmi Gamaoun

Thanks to its greater flexibility and biocompatibility with human tissue, superelastic NiTi alloys have taken an important part in the market of orthodontic wires. However, wire fractures and superelasticity losses are notified after a few months from being fixed in the teeth. This behavior is due to the hydrogen presence in the oral cavity, which brittles the NiTi arch wire. In this article, a diffusion-mechanical coupled model is presented while considering the hydrogen influences on the NiTi superelasticity. The model is integrated in ABAQUS finite element software via a UMAT subroutine. Additionally, a finite element model of a deflected orthodontic NiTi wire within three teeth brackets is simulated in the presence of hydrogen. The numerical results demonstrate that the force applied to the tooth drops with respect to the increase in the hydrogen amount. This behavior is attributed to the expansion of the NiTi structure after absorbing hydrogen. In addition, it is shown that hydrogen induces a loss of superelasticity. Hence, it attenuates the role of the orthodontic wire on the correction tooth malposition.


2011 ◽  
Vol 291-294 ◽  
pp. 3282-3286 ◽  
Author(s):  
Jiang Wei Wu ◽  
Peng Wang

In port crane industry, the surface hardening technique is widely used in order to improve the strength of wheel. But the hardening depth is chosen only by according to the experience, and the effect of different hardened depths is not studied theoretically. In this paper, the contact stresses in wheel with different hardening depth have been analyzed by applying three-dimensional finite element model. Based on this model, the ANSYS10.0 finite element software is used. The elastic wheel is used to verify the numerical results with the Hertz’s theory. Three different hardening depths, namely 10mm, 25mm and whole hardened wheel, under three different vertical loads were applied. The effect of hardening depth of a surface hardened wheel is discussed by comparing the contact stresses and contact areas from the numerical results.


2011 ◽  
Vol 306-307 ◽  
pp. 733-737
Author(s):  
Xu Dan Dang ◽  
Xin Li Wang ◽  
Hong Song Zhang ◽  
Jun Xiao

In this article the finite element software was used to analyse the values for compressive strength of X-cor sandwich. During the analysis, the failure criteria and materials stiffness degradation rules of failure mechanisms were proposed. The failure processes and failure modes were also clarified. In the finite element model we used the distributions of failure elements to simulate the failure processes. Meanwhile the failure mechanisms of X-cor sandwich were explained. The finite element analysis indicates that the resin regions of Z-pin tips fail firstly and the Z-pins fail secondly. The dominant failure mode is the Z-pin elastic buckling and the propagation paths of failure elements are dispersive. Through contrast the finite element values and test results are consistent well and the error range is -7.6%~9.5%. Therefore the failure criteria and stiffness degradation rules are reasonable and the model can be used to predict the compressive strength of X-cor sandwich.


2011 ◽  
Vol 117-119 ◽  
pp. 1535-1542 ◽  
Author(s):  
Hua Wei Zhang ◽  
Wei Xia ◽  
Zhi Heng Wu

In this paper, the clamping unit of a two-platen injection molding machine was modeled by Pro/ENGINEER, and was imported to Altair HyperWorks. In HyperMesh module, the finite element model was set up, ANSYS has been used in the finite element analysis of the clamping unit and the deformation and stress results were obtained. Based on the topology optimization of HyperWorks/OptiStruct, recommendations to improve the structure of the clamping mechanism are presented; the results showed that less material was used while its performance was maintained.


2015 ◽  
Vol 733 ◽  
pp. 591-594
Author(s):  
Yong Zhen Zhu ◽  
Kuo Yang ◽  
Qi Yang ◽  
Yun De Zhao

The CAD software was used to establish 3D model of frame of dump truck, and the finite element model was established through Hyper Mesh. The stress distributions of the frame in vertical accelerating, turning, twisting and climbing conditions were computed through finite element software when the dump truck was loaded 80t. The result is consistent with the actual situation of the frame, which proved that the approach of finite element analysis is feasible. And we proposed the improved method of the frame according to finite element results.


2014 ◽  
Vol 578-579 ◽  
pp. 278-281
Author(s):  
Pi Yuan Xu ◽  
Qian Chen ◽  
Ya Feng Xu

In this paper, in order to understand fully the development of failure mechanism, bearing capacity and seismic performance of the steel H-beams and composite concrete filled steel tubular (CFST) column joints strengthened by outside strengthening ring, in the space zone the effects of changing the axial compression ratio is investigated. A 3D joint finite element model is built up by finite element software ABAQUS, the elastic-plastic finite element analysis is carried through numerical modeling process. The analysis results showed that low axial compression ratio has a little influence on the bearing capacity; with the increase of axial pressure the bearing capacity will decrease in a high axial compression ratio, moreover the failure pattern of joint changes from beam end to column end. The ductility of the specimens is decreased by raising axial compression ratio.


2011 ◽  
Vol 94-96 ◽  
pp. 2005-2008 ◽  
Author(s):  
Yuan Wen Cao ◽  
Xue Jiao Huang ◽  
Li Ying Ma ◽  
Sheng Qiu ◽  
Shao Xiong Gui

In this paper a dynamical equation about vibratory drum - soil system was set based on the non-linear character of vibration compaction of vibratory roller. The finite element model of vibratory drum - soil system was established by the finite element software ABAQUS, with which the vibration compaction process of vibratory drum is simulated. According to the analysis of the vibration propagation on the soil surface, the longitudinal vibration propagation of soil, the stress and strain of the soil under the vibratory drum, results have proved that it is valid to simulate the interaction between vibratory drum and soil by the nonlinear finite element method, which offered a new way to research the interaction between vibratory drum and soil.


2012 ◽  
Vol 557-559 ◽  
pp. 300-303
Author(s):  
Cheng Hong Duan ◽  
Xiang Peng Luo ◽  
Nan Zhang

In this paper, a finite element model of a composite gas cylinder was established by ABAQUS finite element software, with consideration that both heads were helically wound and their wound angle and wound thickness varied with different parallel circle radius. Stress of the composite gas cylinder and PEEQ of its liner under different working conditions after autofrettage treatment were studied, the stress distribution was assessed by the DOT CFFC standard and the effective range of autofrettage treatment was confirmed. This finite element analysis method may be referable to the design and inspection of composite gas cylinders.


2012 ◽  
Vol 488-489 ◽  
pp. 753-758 ◽  
Author(s):  
P. Ganesh ◽  
V.S. Senthil Kumar

The friction stir welded superplastic forming of AA6061-T6 sheet has been numerically analyzed based on the experimental and finite element software. A selected range of tool rotating speeds of 500, 1000 and 2000 rpm was used for friction stir welding. At constant temperature of 550O C and constant pressure of 0.4 Mpa, superplastic forming experiments was performed using free forming die for the friction stir welded sheets. A detailed 3D element type study has been performed in the finite element analysis. The proposed finite element model has been validated in comparison with experimental data. The results are found to have reasonably good agreement between simulations and experiment. The effect of constant pressure, coefficient of friction, strainrate and strain-rate sensitivity has been studied using the proposed finite element model.


2014 ◽  
Vol 607 ◽  
pp. 286-289
Author(s):  
Hai Fei Qiu ◽  
Song Lin Wu ◽  
Hong Cai Yang

Trough roller is an important component part on belt conveyor, the carrying capacity of the roller is a basis of belt conveyor. The calculation principle and method of material’s cross section area is deduced in the thesis, and mechanical analysis of the trough roller is carried out based on that, in results, the static load of it is calculated. The finite element model of the trough roller is set up by Simulation /Works software, and then the stress and deformation results of it is clear through finite element statics calculation and analysis. Based on this thesis, some valuable basis and reference are offered to trough roller’s strength and stiffness design.


Sign in / Sign up

Export Citation Format

Share Document