Uni-axial shaking table tests and validations of a seismic isolation system made of spring tube braces

2019 ◽  
Vol 118 ◽  
pp. 35-46
Author(s):  
V. Karayel ◽  
E. Yuksel ◽  
T. Gokce ◽  
F. Sahin
Author(s):  
Shuichi Yabana ◽  
Kenji Kanazawa ◽  
Seiji Nagata ◽  
Seiji Kitamura ◽  
Takeshi Sano

This paper describes results of shaking table tests to grasp ultimate behavior of seismic isolation system under extremely strong earthquake motions, including failure of rubber bearings. The results of the shaking table tests are expected to be useful for the design of seismically isolated nuclear facilities, especially fast breeder reactor (FBR) plants. In the test, lead rubber bearings, of which the diameter is 505 mm and about 1/3 scale of a prototype in planning FBR plants, are used; the test specimens are loaded by the largest three-dimensional shaking table in E-defense of National Research Institute for Earth Science and Disaster Prevention (NIED) of Japan. Failure of rubber bearings occurs with amplified tentative design earthquake motions. From the tests, the ultimate responses of the upper structure and rubber bearings are presented. In particular, the change of floor response spectra and restoring force characteristics of rubber bearings according to increase of input motions is discussed. Furthermore, mechanism of the failure of rubber bearings is investigated from the observation of failure surfaces and cut sections, static loading tests, and material tests of rubber bearings. Finally, the function of seismic isolation system after the failure of a part of rubber bearings is confirmed under the tentative design earthquake.


2014 ◽  
Vol 580-583 ◽  
pp. 1490-1493 ◽  
Author(s):  
Wei Xiong ◽  
Ming Ren Yan ◽  
Yao Zhuang Li

The isolation effectiveness of the Geotechnical Seismic Isolation (GSI) system was further investigated via a series of prescribed shaking-table tests. The dynamic response of GSI system was also evaluated in detail of this work. A parametric study for assessment of the isolation performance of GSI was conducted by varying experimental key parameters, such as rubber percentage of rubber-sand mixtures (RSM), configuration of the foundation, storey number of the superstructure, and different kinds of seismic acceleration inputs. From the parametric survey, it can be concluded that the GSI system can to some extent attenuate the dynamic response of the superstructure under big earthquake shakings.


2012 ◽  
Vol 446-449 ◽  
pp. 378-381
Author(s):  
Jian Min Jin ◽  
Ping Tan ◽  
Fu Lin Zhou ◽  
Yu Hong Ma ◽  
Chao Yong Shen

Mid-story isolation structure is developing from base isolation structures. As a complex structural system, the work mechanism of base isolation structure is not entirely appropriate for mid-story isolation structure, and the prolonging of structural natural period may not be able to decrease the seismic response of substructure and superstructure simultaneously. In this paper, for a four-story steel frame model, whose prototype first natural period is about 1s without seismic isolation design, the seismic responses and isolation effectiveness of mid-story isolation system with lead rubber bearing are studied experimentally by changing the location of isolation layer. Respectively, the locations of isolation layer are set at bottom of the first story, top of the first story, top of the second story and top of the third story. The results show that mid-story isolation can reduce seismic response in general, and substructure acceleration may be amplified.


2010 ◽  
Vol 163-167 ◽  
pp. 4449-4453
Author(s):  
Wei Xiong ◽  
Hing Ho Tsang ◽  
S.H. Lo ◽  
Shou Ping Shang ◽  
Hai Dong Wang ◽  
...  

In this study, an experimental investigation program on a newly proposed seismic isolation technique, namely “Geotechnical Seismic Isolation (GSI) system”, is conducted with an aim of simulating its dynamic performance during earthquakes. The testing procedure is three-fold: (1) A series of cyclic simple shear tests is conducted on the key constituent material of the proposed GSI system, i.e., rubber-sand mixture (RSM) in order to understand its behavior under cyclic loadings. (2) The GSI system is then subjected to a series of shaking table tests with different levels of input ground shakings. (3) By varying the controlling parameters such as percentage of rubber in RSM, thickness of RSM layer, coupled with the weight of superstructure, a comprehensive parametric study is performed. This experimental survey demonstrates the excellent performance of the GSI system for potential seismic hazard mitigation.


Author(s):  
Seiji Kitamura ◽  
Masaki Morishita ◽  
Shuichi Yabana ◽  
Kazuta Hirata ◽  
Katsuhiko Umeki

The seismic isolation technology is planned to introduce to the next generation’s fast breeder reactor (FBR) plants in order to reduce seismic load subjected to components. To grasp the ultimate behavior of a seismically isolated plant under extremely strong earthquake at a level beyond the design ground motions and to establish ultimate strength design methods of seismic isolators, we made a series of shaking table test with large test specimen of seismically isolated FBR plants. The ultimate behavior test was performed using one of the world largest three-dimensional shaking tables “E-Defense” of National Research Institute for Earth Science and Disaster Prevention of Japan to obtain ultimate behavior data of a technologically-feasible large scale model. Test specimen consists of concrete blocks, reinforced concrete walls and isolation layer with six laminated rubber bearing with lead plug (LBR). The gross mass of upper structure of the test specimen is about 600ton. The diameter of the LRB is 505mm that reduced prototype dimensions to about 1/3. In this study, the following three behaviors were assumed as the ultimate behavior of the seismic isolation system; 1) loss of response reduction function of the isolation system by hardening of rubber, 2) non-linear response behavior by the cracking of the concrete wall and 3) braking of the LRB. When the input acceleration level increased, the test specimen was designed to show the ultimate behavior in the above-mentioned order. The ultimate behavior test of the seismic isolation system was carried out on the condition of two input waves by using two test specimen sets of the same dimensions. In this paper, details of the test specimen including the LRB and loading conditions are described. Response behavior of the test specimen under design ground motions is also reported. The restoring force characteristics of the LRBs were stable. The response acceleration of a horizontal direction measured at the upper structure of the specimen was reduced. Prior to the ultimate behavior tests with strong input waves, the response reduction functions of the test specimen under design ground motions were confirmed.


Author(s):  
Satoru Inaba ◽  
Takuya Anabuki ◽  
Kazutaka Shirai ◽  
Shuichi Yabana ◽  
Seiji Kitamura

This paper describes the dynamic damage test of a reinforced concrete (RC) wall structure with seismic isolation sysytem. It has been expected that seismically isolated structures are damaged in sudden when the accelerations of the structures exceed a certain level by hardening of the rubber bearings. However, the response behavior and the damage mode have not been observed by experimental test yet. So, shaking table tests were carried out at “E-Defense”, equipping the world’s largest shaking table, located at Miki City, Hyogo prefecture, Japan. The specimen was composed of an upper structure of 600 ton by weight and six lead-rubber bearings (LRBs) of 505 mm in diameter which provide both stiffness and hysteretic damping. The upper structure consisted of a RC mass and four RC walls with counter weight. The RC wall structure was designed so that the damage of the RC wall occurred between the shear force at the hardening of the rubber bearings and that at their breaking. The dimensions of the RC wall were 1600 × 800 × 100 mm (B × H × t). The reinforcement ratios were 2.46% in vertical by D13 (deformed reinforcing bar, 13 mm in diameter) and 1.0% in horizontal by D10. The shaking table test was conducted consecutively by increasing the levels up to 225% of tentative design earthquake motion. Consequently, because of the increase of the structural response by the hardening of the rubber bearings, the damage of the wall structure with seismic isolation system suddenly happened. In addition, the preliminary finite element analysis simulated the test results fairly well, which were the restoring force characteristics, the crack patterns of the RC wall structure and such.


2021 ◽  
Vol 12 (1) ◽  
pp. 125
Author(s):  
Sang-Jin Ma ◽  
Tae-Myung Shin ◽  
Ju-Seung Ryu ◽  
Jin-Hyeong Lee ◽  
Gyeong-Hoi Koo

Response characteristics of small-sized laminated rubber bearings (LRBs) with partial damage and total failure were investigated. For nuclear component seismic isolation, ultimate response characteristics are mainly reviewed using a beyond design basis earthquake (BDBE). Static tests, 3D shaking table tests, and verification analyses were performed using optional LRB design prototypes. During the static test, the hysteresis curve behavior from buckling to potential damage was observed by applying excessive shear deformation. The damaged rubber surface of the laminated section inside the LRB was checked through water jet cutting. A stress review by response spectrum analysis was performed to simulate the dynamic tests and predict seismic inputs’ intensity level that triggers LRB damage. Shaking table tests were executed to determine seismic response characteristics with partial damage and to confirm the stability of the superstructure when the supporting LRBs completely fail. Shear buckling in LRBs by high levels of BDBE may be quickly initiated via partial damage or total failure by the addition of torsional or rotational behavior caused by a change in the dynamic characteristics. Furthermore, the maximum seismic displacement can be limited within the range of the design interface due to the successive slip behavior, even during total LRB failure.


2011 ◽  
Vol 15 (8) ◽  
pp. 1157-1177 ◽  
Author(s):  
Donatello Cardone ◽  
Peyman Narjabadifam ◽  
Domenico Nigro

Author(s):  
S. Kitamura ◽  
S. Okamura ◽  
K. Takahashi

In Japan, several kinds of three-dimensional seismic isolation system for next-generation nuclear power plant such as fast reactors have been studied in recent years. We proposed a structural concept of a vertical component isolation system, assuming a building adopting a horizontal base isolation system. In this concept, a reactor vessel and major primary components are suspended from a large common deck supported by isolation devices consisting of large coned disk springs. In order to verify the isolation performance of the vertical component isolation system, 1/8 series of shaking table tests using a scale model were conducted. The test model was composed of 4 vertical isolation devices, common deck and horizontal load suspension system. For the design earthquake, the system smoothly operated, and sufficient isolation characteristics were shown. The simulation analysis results matched well the test results, so the validity of the design technique was able to be verified. As the result, the prospect that the vertical isolation system applied to the FBR plant could technically realize was obtained.


Sign in / Sign up

Export Citation Format

Share Document