Finite Element Analysis on the Redistribution of Reaction at Support

2014 ◽  
Vol 602-605 ◽  
pp. 761-764
Author(s):  
Mu Chen ◽  
Jiang Hong Xue ◽  
Neng Gan

We use the finite element software Midas FEA to set up space entity model, and discuss various factors including the stiffness of bearing, counteracting force of adjacent beam, the influence of the stiffness of bridge pier on reaction at support. In the practical engineering. Coupling of shear lag, stiffness of beam, bending-torsional coupling and partial load can also affect the redistribution of reaction at support. Through the simulation of the finite element software, we check the support of a railway bridge in Guangzhou city. In the end we found that the stiffness of beam can make the middle support have a tendency to increase. If we take all the factors into account, the force of the middle support will be greater than on the both ends of bearing and the force on the both ends of bearing will be approximately equal.

2014 ◽  
Vol 580-583 ◽  
pp. 1369-1376
Author(s):  
Bin Shu ◽  
Jian He Peng

The paper aims to solve the serious and regular crack problems in underground garage. ANSYS finite element software is applied to set up the overall finite element model on floor-foundation and foundation coupling beam-foundation soil in underground garage. Combined with engineering field detection, factors influencing underground garage floor like underground water level, soil expansion caused by water content change in expansive soil, soil poisson ratio, foundation settlement are taken into consideration to find out the causes of cracks. The study is expected to provide reference for similar cases in other projects.


2013 ◽  
Vol 421 ◽  
pp. 747-750
Author(s):  
Meng Sha Liu ◽  
Ying Huang ◽  
Jin San Ju

In this paper, a three-dimensional model of a steel sculpture was analyzed by using the finite element software ANSYS. The structural static response were achieved respectively under gravity load, ice load and wind load based on wind tunnel tests with the dynamic response under earthquake action. Besides, the structural parameters such as strength and stiffness under different conditions were also got. It is hoped that the analysis of ultrahigh steel sculpture will offer some technical support for practical engineering.


2013 ◽  
Vol 353-356 ◽  
pp. 823-827 ◽  
Author(s):  
Xin Chuang Liu ◽  
Bing Long Wang ◽  
Long Cai Yang ◽  
Yu Jia

In order to meet the requirements of high-speed train's safe operation, the horizontal displacement of high-speed railway bridge pier top must be strictly controlled. This paper relies on one road construction engineering beneath an existing high-speed railway bridge. We use 2D finite element software to analyze the magnitude and direction of pier top horizontal displacement caused by road load. We take it into account that the effect of the soil nature on pier top horizontal displacement. The analysis showed that the nature of soil around piles of high-speed railway bridge is closely related to the magnitude and direction of the pier top horizontal displacement. Authors believe that the horizontal displacement of pier top consists of two parts. One is pier top pure horizontal displacement dragged by horizontal displacement of the top of piles, the other is pier top rotation horizontal displacement driven by the rotation of pile cap. The analysis result can be used for the design of road with embankment structure beneath high-speed railway bridge.


2014 ◽  
Vol 1079-1080 ◽  
pp. 397-400
Author(s):  
Wei Hua Xu ◽  
Li Xin Li ◽  
Tao Chen

the lining of shield lining masonry joint part of the stress analysis by the finite element software ABAQUS, obtained the conclusion proved that,although the bolt for joint area is relatively small, but by the positive momentwhen the bolt hole will produce stress concentration phenomenon more obvious, this situation should be given more attention in practical engineering response.


2011 ◽  
Vol 368-373 ◽  
pp. 2268-2273
Author(s):  
Mei Liang Yang ◽  
Zhen Hai Zeng ◽  
Fang Ping Zhong ◽  
Dan Chen

Steel cofferdam has an abroad application in high pile cap construction in deep water foundations. Because of the obvious three-dimensional effect and its complex stress and strain, the traditional simplified calculating method couldn’t reach the requirements of practical engineering. The general purpose finite element software Ansys was used to analyze the stress and strain of steel cofferdam and sealing concrete, and achieved a good effect to ensure the engineering safety.


2013 ◽  
Vol 690-693 ◽  
pp. 2327-2330
Author(s):  
Ming Bo Han ◽  
Li Fei Sun

By using finite element software, the paper establishes the main stand analysis model of the Ф140 pipe rolling mill and provides the model analysis of main stand in cases of full load. Verify the design of main stand fully comply with the technical requirements .In this paper, it provides the theoretical position of split casting and welding method using electric slag welding.


2014 ◽  
Vol 898 ◽  
pp. 399-402
Author(s):  
Heng Sun ◽  
Bai Shou Li

For traditional ordinary concrete wall column prone to thermal bridges, posted outside the insulation board short life than the life of the building,in the glazed hollow bead of recycled concrete foundation with good thermal conductivity test and compressive strength of the proposed ,use glazed hollow bead of recycled concrete exterior wall column instead of the traditional ordinary concrete wall column ,and using the finite element software ANSYS simulation analysis the uniaxial compression of glazed hollow bead of recycled concrete short columns and ordinary concrete short columns. Comparative analysis showed the same intensity level glazed hollow bead of recycled concrete ultimate compressive bearing capacity of an analog value the same as ordinary concrete short columns. To validate the ANSYS simulation of concrete short columns under uniaxial compression condition .


2011 ◽  
Vol 2-3 ◽  
pp. 140-143
Author(s):  
Qing Feng Yang ◽  
Peng Wang ◽  
Yu Hong Wang ◽  
Kai Zhang

The resonance frequency of the cymbal transducer ranges from 2kHz to 40kHz and its effective electromechanical coupling factor is around 20%. Finite element analysis has been performed to ascertain how the transducer’s makeup affect the transducer’s performance parameters. Two-dimensional axisymmetric model of the cymbal transducer was founded by finite element software-ANSYS, the application of the element type was discussed and the FEM models were built up under the far field condition. Eight groups of cymbal transducers of resonance frequency around 3kHz with different structural dimensions were designed. It was better for choosing the cymbal transducer of the 8mm cavity coping diameter, 20.8mm cavity bottom diameter and 26.8mm piezoelectric ceramic wafer diameter than others for reducing distortion degree of the signal and improving communication turnover in the researched cymbal transducers. It was appropriate for choosing the cymbal transducer of the 8mm cavity coping diameter, 22.4mm cavity bottom diameter and 26.4mm piezoelectric ceramic wafer diameter in order to improve the free-field voltage sensitivity and transmission efficient.


2009 ◽  
Vol 33 (2) ◽  
pp. 175-187 ◽  
Author(s):  
Mohamed Nizar Bettaieb ◽  
Mohamed Maatar ◽  
Chafik Karra

The purpose of this work is to determine the spur gear mesh stiffness and the stress state at the level of the tooth foot. This mesh stiffness is derived from the calculation of the normal tooth displacements: local displacement where the load is applied, tooth bending displacement and body displacement [15]. The contribution of this work consists in, basing on previous works, developing optimal finite elements model in time calculation and results precision. This model permits the calculation of time varying mesh stiffness and the evaluation of stress state at the tooth foot. For these reasons a specific Fortran program was developed. It permit firstly, to obtain the gear geometric parameters (base radii, outside diameter,…) and to generate the data base of the finite element meshing of a tooth or a gear. This program is interfaced with the COSMOS/M finite element software to predict the stress and strain state and calculate the mesh stiffness of a gear system. It is noted that the mesh stiffness is periodic and its period is equal to the mesh period.


2018 ◽  
Vol 29 (16) ◽  
pp. 3188-3198 ◽  
Author(s):  
Wissem Elkhal Letaief ◽  
Aroua Fathallah ◽  
Tarek Hassine ◽  
Fehmi Gamaoun

Thanks to its greater flexibility and biocompatibility with human tissue, superelastic NiTi alloys have taken an important part in the market of orthodontic wires. However, wire fractures and superelasticity losses are notified after a few months from being fixed in the teeth. This behavior is due to the hydrogen presence in the oral cavity, which brittles the NiTi arch wire. In this article, a diffusion-mechanical coupled model is presented while considering the hydrogen influences on the NiTi superelasticity. The model is integrated in ABAQUS finite element software via a UMAT subroutine. Additionally, a finite element model of a deflected orthodontic NiTi wire within three teeth brackets is simulated in the presence of hydrogen. The numerical results demonstrate that the force applied to the tooth drops with respect to the increase in the hydrogen amount. This behavior is attributed to the expansion of the NiTi structure after absorbing hydrogen. In addition, it is shown that hydrogen induces a loss of superelasticity. Hence, it attenuates the role of the orthodontic wire on the correction tooth malposition.


Sign in / Sign up

Export Citation Format

Share Document