Research on the Fault Characteristic Extraction of Hydropower Units Based on Hilbert-Huang Transform

2014 ◽  
Vol 607 ◽  
pp. 633-637
Author(s):  
Yu Quan Zhang ◽  
Yan Tao Zhu ◽  
Yuan Zheng ◽  
Yuan Feng ◽  
Xin Feng Ge ◽  
...  

In order to effectively extract nonstationary and nonlinear fault signature of hydropower units’ signals, a new method, based on Hilbert–Huang transform (HHT), is proposed. This method is used to carry out EMD (Empirical Mode Decomposition) analysis and Hilbert transform of signals firstly and then extract Hilbert spectrum to provide a basis for signal feature extraction. The vibration signal of upper brackets in hydropower units has been put forward with experimental analysis. The results suggest that the EMD can decompose vibration components in different frequency domain, which has intuitive physical meaning. Moreover, Hilbert spectrum also has a good resolution in time domain and frequency domain. Thus, HHT can be used to depict the fault signals effectively and lay the foundation of the fault pattern recognition.

2011 ◽  
Vol 58-60 ◽  
pp. 636-641
Author(s):  
Yan Chen Shin ◽  
Yi Cheng Huang ◽  
Jen Ai Chao

This paper proposes a diagnosis method of ball screw preload loss through the Hilbert-Huang Transform (HHT) and Multiscale entropy (MSE) process when machine tool is in operation. Maximum dynamic preload of 2% and 4% ball screws are predesigned, manufactured and conducted experimentally. Vibration signal patterns are examined and revealed by Empirical Mode Decomposition (EMD) with Hilbert Spectrum. Different preload features are extracted and discriminated by using HHT. The irregularity development of ball screw with preload loss is determined and abstracting via MSE based on complexity perception. The experiment results successfully show preload loss can be envisaged by the proposed methodology.


2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881346 ◽  
Author(s):  
Tabi Fouda Bernard Marie ◽  
Dezhi Han ◽  
Bowen An ◽  
Jingyun Li

To detect and recognize any type of events over the perimeter security system, this article proposes a fiber-optic vibration pattern recognition method based on the combination of time-domain features and time-frequency domain features. The performance parameters (event recognition, event location, and event classification) are very important and describe the validity of this article. The pattern recognition method is precisely based on the empirical mode decomposition of time-frequency entropy and center-of-gravity frequency. It implements the function of identifying and classifying the event (intrusions or non-intrusion) over the perimeter to secure. To achieve this method, the first-level prejudgment is performed according to the time-domain features of the vibration signal, and the second-level prediction is carried out through time-frequency analysis. The time-frequency distribution of the signal is obtained by empirical mode decomposition and Hilbert transform and then the time-frequency entropy and center-of-gravity frequency are used to form the time-frequency domain features, that is, combined with the time-domain features to form feature vectors. Multiple types of probabilistic neural networks are identified to determine whether there are intrusions and the intrusion types. The experimental results demonstrate that the proposed method is effective and reliable in identifying and classifying the type of event.


2014 ◽  
Vol 31 (9) ◽  
pp. 1982-1994 ◽  
Author(s):  
Xiaoying Chen ◽  
Aiguo Song ◽  
Jianqing Li ◽  
Yimin Zhu ◽  
Xuejin Sun ◽  
...  

Abstract It is important to recognize the type of cloud for automatic observation by ground nephoscope. Although cloud shapes are protean, cloud textures are relatively stable and contain rich information. In this paper, a novel method is presented to extract the nephogram feature from the Hilbert spectrum of cloud images using bidimensional empirical mode decomposition (BEMD). Cloud images are first decomposed into several intrinsic mode functions (IMFs) of textural features through BEMD. The IMFs are converted from two- to one-dimensional format, and then the Hilbert–Huang transform is performed to obtain the Hilbert spectrum and the Hilbert marginal spectrum. It is shown that the Hilbert spectrum and the Hilbert marginal spectrum of different types of cloud textural images can be divided into three different frequency bands. A recognition rate of 87.5%–96.97% is achieved through random cloud image testing using this algorithm, indicating the efficiency of the proposed method for cloud nephogram.


2014 ◽  
Vol 936 ◽  
pp. 2243-2246 ◽  
Author(s):  
Zhu Ting Yao ◽  
Hong Xia Pan

Engine is as a power machine, the operating status is good or bad, directly affects the working status of equipment. The status monitoring and fault diagnosis is very necessary to ensure that the equipment runs in its best, and improves equipment maintenance quality and efficiency. The engine failure shows the complexity and diversity of the interaction and complex relationship between the various subsystems of the engine, that is the fault of complexity, ambiguity, correlation, relativity and multiple faults coexistence. The available information are much in the engine diagnosis, for example, the vibration signal from bearings, cylinder head or cylinder block surface; oil, cooling water, pressure of intake, exhaust and fuel; temperature signal; noise, speed or oil-sample signals. In this paper, an engine as an example, engine fault diagnosis experimental system is built, the normal state, left one and right six cylinders off the oil, air filter blockage (inlet wood blockage is 30%, the inlet has screen cloth.) in the load of 2565Nm, and the speeds of 1500r/min, 1800r/min, 2200r/min are studied. The experimental results analysis, feature extraction and fault diagnosis are finished based on the time domain and frequency domain. Keywords: engine, fault diagnosis, time domain, frequency domain.


Author(s):  
Chen-Chao Fan ◽  
Jhe-Wei Syu ◽  
Min-Chun Pan ◽  
Wen-Chang Tsao

Oil whip induces self-excited vibration in fluid-handling machines, and what is worse, it can cause self-excited reverse precessional full annular rub, known as “dry whip” which is a secondary phenomenon resulting from a primary cause and may lead to a catastrophic failure of machines; that is, “coincidence of oil whip and dry whip” that occurs repeatedly with constant frequency and amplitude in small clearance cases of fluid-handling machines. Early detection of rub malfunction is essential to avoid damage. Hilbert Huang Transform, which included an empirical mode decomposition and Hilbert spectral analysis, is applied. Hilbert Huang Transform is a great method for analyzing non-linear and non-stationary signals, such as rotor startup signals. Hilbert Huang Transform clearly indicates instability at its initiation stage, and energy concentration changes by different stages. Malfunctions like rub can not observe by Hilbert spectrum. Hilbert spectrum combining full spectrum is developed, as know full Hilbert spectrum, to interpret the rub. The coincidence of oil whip and dry whip is observed definitely through FHS. The advantage of the full Hilbert spectrum is to offer a faster, more efficient method to diagnose fluid-induced instability.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Weigang Wen ◽  
Robert X. Gao ◽  
Weidong Cheng

The important issue in planetary gear fault diagnosis is to extract the dependable fault characteristics from the noisy vibration signal of planetary gearbox. To address this critical problem, an envelope manifold demodulation method is proposed for planetary gear fault detection in the paper. This method combines complex wavelet, manifold learning, and frequency spectrogram to implement planetary gear fault characteristic extraction. The vibration signal of planetary gear is demodulated by wavelet enveloping. The envelope energy is adopted as an indicator to select meshing frequency band. Manifold learning is utilized to reduce the effect of noise within meshing frequency band. The fault characteristic frequency of the planetary gear is shown by spectrogram. The planetary gearbox model and test rig are established and experiments with planet gear faults are conducted for verification. All results of experiment analysis demonstrate its effectiveness and reliability.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Junjun Chen ◽  
Bing Xu ◽  
Xin Zhang

To accurately describe the characteristics of a signal, the feature parameters in time domain and frequency domain are usually extracted for characterization. However, the total number of feature parameters in time domain and frequency domain exceeds twenty, and all of the feature parameters are used for feature extraction, which will result in a large amount of data processing. For the purpose of using fewer feature parameters to accurately reflect the characteristics of the vibration signal, a simple but effective vibration feature extraction method combining time-domain dimensional parameters (TDDP) and Mahalanobis distance (MD) is proposed, i.e., TDDP-MD. In this method, ten time-domain dimensional parameters are selected to extract fault features, and the distance evaluation technique based on Mahalanobis distance criterion function is also introduced to calculate the feature vector, which can be used to classify different failure types. Finally, the proposed method is applied to fault diagnosis of rolling element bearings, and experimental analysis results show that the proposed method can recognize different failure types accurately and effectively with only ten time-domain dimensional parameters and a small quantity of training samples.


2011 ◽  
Vol 1 (32) ◽  
pp. 25
Author(s):  
Shigeru Kato ◽  
Magnus Larson ◽  
Takumi Okabe ◽  
Shin-ichi Aoki

Turbidity data obtained by field observations off the Tenryu River mouth were analyzed using the Hilbert-Huang Transform (HHT) in order to investigate the characteristic variations in time and in the frequency domain. The Empirical Mode Decomposition (EMD) decomposed the original data into only eight intrinsic mode functions (IMFs) and a residue in the first step of the HHT. In the second step, the Hilbert transform was applied to the IMFs to calculate the Hilbert spectrum, which is the time-frequency distribution of the instantaneous frequency and energy. The changes in instantaneous frequencies showed correspondence to high turbidity events in the Hilbert spectrum. The investigation of instantaneous frequency variations can be used to understand transitions in the state of the turbidity. The comparison between the Fourier spectrum and the Hilbert spectrum integrated in time showed that the Hilbert spectrum makes it possible to detect and quantify the cycle of locally repeated events.


2016 ◽  
Vol 44 ◽  
pp. 141-150
Author(s):  
Kazi Mahmudul Hassan ◽  
Md. Ekramul Hamid ◽  
Takayoshi Nakai

This study proposed an enhanced time-frequency representation of audio signal using EMD-2TEMD based approach. To analyze non-stationary signal like audio, timefrequency representation is an important aspect. In case of representing or analyzing such kind of signal in time-frequency-energy distribution, hilbert spectrum is a recent approach and popular way which has several advantages over other methods like STFT, WT etc. Hilbert-Huang Transform (HHT) is a prominent method consists of Empirical Mode Decomposition (EMD) and Hilbert Spectral Analysis (HSA). An enhanced method called Turning Tangent empirical mode decomposition (2T-EMD) has recently developed to overcome some limitations of classical EMD like cubic spline problems, sifting stopping condition etc. 2T-EMD based hilbert spectrum of audio signal encountered some issues due to the generation of too many IMFs in the process where EMD produces less. To mitigate those problems, a mutual implementation of 2T-EMD & classical EMD is proposed in this paper which enhances the representation of hilbert spectrum along with significant improvements in source separation result using Independent Subspace Analysis (ISA) based clustering in case of audio signals. This refinement of hilbert spectrum not only contributes to the future work of source separation problem but also many other applications in audio signal processing.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Wanlu Jiang ◽  
Zhenbao Li ◽  
Sheng Zhang ◽  
Teng Wang ◽  
Shuqing Zhang

An axial piston pump fault diagnosis algorithm based on empirical wavelet transform (EWT) and one-dimensional convolutional neural network (1D-CNN) is presented. The fault vibration signals and pressure signals of axial piston pump are taken as the analysis objects. Firstly, the original signals are decomposed by EWT, and each signal component is screened and reconstructed according to the energy characteristics. Then, the time-domain features and the frequency-domain features of the denoised signal are extracted, and features of time domain and frequency domain are fused. Finally, the 1D-CNN model was deployed to the WISE-Platform as a Service (WISE-PaaS) cloud platform to realize the real-time fault diagnosis of axial piston pump based on the cloud platform. Compared with ensemble empirical mode decomposition (EEMD) and complementary ensemble empirical mode decomposition (CEEMD), the results show that the axial piston pump fault diagnosis algorithm based on EWT and 1D-CNN has higher fault identification accuracy.


Sign in / Sign up

Export Citation Format

Share Document