Improved GNSS Localization with the Use of DOP Parameter

2014 ◽  
Vol 611 ◽  
pp. 450-466 ◽  
Author(s):  
František Duchoň ◽  
Jaroslav Hanzel ◽  
Andrej Babinec ◽  
Jozef Rodina ◽  
Peter Paszto ◽  
...  

This paper presents the approach to improve localization based on GNSS. The principles of the GPS localization and impact of the DOP parameter on localization error are mathematically analyzed. The algorithm based on the use of DOP parameter and Kalman filter for the improvement of the localization accuracy suitable for small scale outdoor mobile robots and other outdoor applications is proposed. The applicability of the proposed methodology was verified by performed experiments with two common cheap miniature GPS modules and accurate high-end GNSS receiver used as a reference frame for the measurements. The obtained results affirmed the improvement of the localization accuracy.

Author(s):  
Jason N. Greenberg ◽  
Xiaobo Tan

Localization of mobile robots in GPS-denied envrionments (e.g., underwater) is of great importance to achieving navigation and other missions for these robots. In our prior work a concept of Simultaneous Localization And Communication (SLAC) was proposed, where the line of sight (LOS) requirement in LED-based communication is exploited to extract the relative bearing of the two communicating parties for localization purposes. The concept further involves the use of Kalman filtering for prediction of the mobile robot’s position, to reduce the overhead in establishing LOS. In this work the design of such a SLAC system is presented and experimentally evaluated in a two-dimensional setting, where a mobile robot localizes itself through wireless LED links with two stationary base nodes. Experimental results are presented to demonstrate the feasibility of the proposed approach and the important role the Kalman filter plays in reducing the localization error. The effect of the distance between the base nodes on the localization performance is further studied, which bears implications in future SLAC systems where mobile base nodes can be reconfigured adaptively to maximize the localization performance.


Author(s):  
Keitaro Naruse ◽  
◽  
Shigekazu Fukui ◽  
Jie Luo

The objective of this paper is to develop a localization systemof cooperativemultiple mobile robots, in which each robot is assumed to observe a set of known landmarks and equipped with an omnidirectional camera. In this paper, it is assumed that a robot can detect other robots by using the omnidirectional camera, share its estimated position with others, and utilize shared positions for its localization. In other words, each robot can be viewed as an additional mobile landmark to a set of stationary landmarks. A foremost concern is how well this system performs localization under a limited amount of information. This paper presents an investigation of self localization error of each robot in a group using Extended Kalman Filter to solve the localization problem with the insufficient landmarks and inaccurate position information.


Author(s):  
Vaishali R. Kulkarni ◽  
Veena Desai ◽  
Raghavendra Kulkarni

Background & Objective: Location of sensors is an important information in wireless sensor networks for monitoring, tracking and surveillance applications. The accurate and quick estimation of the location of sensor nodes plays an important role. Localization refers to creating location awareness for as many sensor nodes as possible. Multi-stage localization of sensor nodes using bio-inspired, heuristic algorithms is the central theme of this paper. Methodology: Biologically inspired heuristic algorithms offer the advantages of simplicity, resourceefficiency and speed. Four such algorithms have been evaluated in this paper for distributed localization of sensor nodes. Two evolutionary computation-based algorithms, namely cultural algorithm and the genetic algorithm, have been presented to optimize the localization process for minimizing the localization error. The results of these algorithms have been compared with those of swarm intelligence- based optimization algorithms, namely the firefly algorithm and the bee algorithm. Simulation results and analysis of stage-wise localization in terms of number of localized nodes, computing time and accuracy have been presented. The tradeoff between localization accuracy and speed has been investigated. Results: The comparative analysis shows that the firefly algorithm performs the localization in the most accurate manner but takes longest convergence time. Conclusion: Further, the cultural algorithm performs the localization in a very quick time; but, results in high localization error.


2018 ◽  
Vol 41 (5) ◽  
pp. 1290-1300
Author(s):  
Jieliang Shen ◽  
Yan Su ◽  
Qing Liang ◽  
Xinhua Zhu

An inertial navigation system (INS) aided with an aircraft dynamic model (ADM) is developed as a novel airborne integrated navigation system, coping with the absence of a global navigation satellite system. To overcome the shortcomings of the conventional linear integration of INS/ADM based on an extended Kalman filter, a nonlinear integration method is proposed. Fast-update ADM makes it possible to utilize a direct filtering method, which employs nonlinear INS mechanics as system equations and a nonlinear ADM as observation equations, substituting the indirect filtering based on linear error equations. The strong nonlinearity generally calls for an unscented Kalman filter to accomplish the fusion process. Dealing with the model uncertainty, the inaccurate statistical characteristics of the noise and the potential nonpositive definiteness of the covariance matrix, an improved square-root unscented H∞ filter (ISRUHF) is derived in the paper, in which the robust factor [Formula: see text] is further expanded into a diagonal matrix [Formula: see text], to improve the accuracy and robustness of the integrated navigation system. Corresponding simulations as well as real flight tests based on a small-scale fixed-wing aircraft are operated and ISRUHF shows superiority compared with the commonly used fusion algorithm.


2013 ◽  
Vol 712-715 ◽  
pp. 1938-1943
Author(s):  
Li Xiao Guo ◽  
Fan Kun ◽  
Wen Jun Yan

Localization and navigation algorithm is the key technology to determine whether or not an AGV (automatic guided vehicle) can run normally. In this paper, we summarize the popular navigation technologies first and then focus on the positioning principle of Nav200 which is adopted in our AGV system. Besides that, the map building method and the layout of the reflective board is also introduced briefly. This paper introduced two navigation methods. The traditional navigation method only uses the sensor data and the electronic map to guide AGV. To improve positioning accuracy, we use the Kalman filter to minimize the error of localization sensor. At last some simulation work was done, the results shows that the localization accuracy was improved by adopting Kalman filter algorithm.


2011 ◽  
Vol 139 (6) ◽  
pp. 2008-2024 ◽  
Author(s):  
Brian C. Ancell ◽  
Clifford F. Mass ◽  
Gregory J. Hakim

Abstract Previous research suggests that an ensemble Kalman filter (EnKF) data assimilation and modeling system can produce accurate atmospheric analyses and forecasts at 30–50-km grid spacing. This study examines the ability of a mesoscale EnKF system using multiscale (36/12 km) Weather Research and Forecasting (WRF) model simulations to produce high-resolution, accurate, regional surface analyses, and 6-h forecasts. This study takes place over the complex terrain of the Pacific Northwest, where the small-scale features of the near-surface flow field make the region particularly attractive for testing an EnKF and its flow-dependent background error covariances. A variety of EnKF experiments are performed over a 5-week period to test the impact of decreasing the grid spacing from 36 to 12 km and to evaluate new approaches for dealing with representativeness error, lack of surface background variance, and low-level bias. All verification in this study is performed with independent, unassimilated observations. Significant surface analysis and 6-h forecast improvements are found when EnKF grid spacing is reduced from 36 to 12 km. Forecast improvements appear to be a consequence of increased resolution during model integration, whereas analysis improvements also benefit from high-resolution ensemble covariances during data assimilation. On the 12-km domain, additional analysis improvements are found by reducing observation error variance in order to address representativeness error. Removing model surface biases prior to assimilation significantly enhances the analysis. Inflating surface wind and temperature background error variance has large impacts on analyses, but only produces small improvements in analysis RMS errors. Both surface and upper-air 6-h forecasts are nearly unchanged in the 12-km experiments. Last, 12-km WRF EnKF surface analyses and 6-h forecasts are shown to generally outperform those of the Global Forecast System (GFS), North American Model (NAM), and the Rapid Update Cycle (RUC) by about 10%–30%, although these improvements do not extend above the surface. Based on these results, future improvements in multiscale EnKF are suggested.


2021 ◽  
Author(s):  
Rafael Lopes ◽  
Felix Antreich ◽  
Hélio Kuga

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.


Sign in / Sign up

Export Citation Format

Share Document