A Review of Product Design for Additive Manufacturing

2014 ◽  
Vol 635-637 ◽  
pp. 97-100 ◽  
Author(s):  
Shi Kai Jing ◽  
Guo Hua Song ◽  
Ji Hong Liu ◽  
Jing Tao Zhou ◽  
He Zhang

Additive Manufacturing (AM) is the digital manufacturing technology by which products are fabricated directly from computer models by selectively curing, depositing or consolidating materials in successive layers. The technology has provided an opportunity to rethink the methods of product design to maximize the product performance through the synthesis of material compositions, structure, and sizes. This overview is created to relate the unique capabilities of AM technologies and discuss the methods of product design. Finally, the current problems and difficulties in this field are discussed in this paper, and this paper proposes the development direction of the product design for additive manufacturing in the future.

2021 ◽  
pp. 1-47
Author(s):  
Siti Nur Humaira Mazlan ◽  
Aini Zuhra Abdul Kadir ◽  
Mariusz Deja ◽  
Dawid Zielinski ◽  
Mohd Rizal Alkahari

Abstract The design for additive manufacturing (DFAM) processing was introduced to fully utilise the design freedom provided by additive manufacturing (AM). Consequently, appropriate design methodologies have become essential for this technology. Recently, many studies have identified the importance of DFAM method utilisation to produce AM parts, and TRIZ is a strategy used to formalise design methodologies. TRIZ is a problem-solving tool developed to assist designers to find innovative and creative solutions. However, the pathway for synergising TRIZ and DFAM is not clearly explained with respect to AM capabilities and complexities. This is mainly because most methods continue to involve use of the classical TRIZ principle, which was developed early in 1946, 40 years before AM technologies were introduced in the mid-1980s. Therefore, to tackle this issue, this study aims to enhance the 40 principles of classical TRIZ to accommodate AM design principles. A modified TRIZ-AM principle has been developed to define the pathway to AM solutions. TRIZ-AM cards are tools that assist designers to select inventive principles (IPs) in the early phases of product design and development. The case study illustrates that even inexperienced AM users can creatively design innovative AM parts.


2021 ◽  
Vol 1 ◽  
pp. 1937-1946
Author(s):  
Aurora Berni ◽  
Yuri Borgianni ◽  
Martins Obi ◽  
Patrick Pradel ◽  
Richard Bibb

AbstractThe concept of Design for Additive Manufacturing (DfAM) is gaining popularity along with AM, despite its scopes are not well established. In particular, in the last few years, DfAM methods have been intuitively subdivided into opportunistic and restrictive. This distinction is gaining traction despite a lack of formalization. In this context, the paper investigates experts' understanding of DfAM. In particular, the authors have targeted educators, as the perception of DfAM scopes in the future will likely depend on teachers' view. A bespoke survey has been launched, which has been answer by 100 worldwide-distributed respondents. The gathered data has undergone several analyses, markedly answers to open questions asking for individual definitions of DfAM, and evaluations of the pertinence of meanings and acceptations from the literature. The results show that the main DfAM aspects focused on by first standardization attempts have been targeted, especially products, processes, opportunities and constraints. Beyond opportunistic and restrictive nuances, DfAM different understandings are characterized by different extents of cognitive endeavor, convergence vs. divergence in the design process, theoretical vs. hands on approaches.


2013 ◽  
Vol 803 ◽  
pp. 409-412
Author(s):  
Xue Liang Ma

The additive manufacturing has become an important development direction of advanced manufacturing technology, the technology will be developed in three directions: the first is the daily consumer goods manufacturing direction; the second is a functional parts manufacturing; the third is the integration of organization and structure of manufacture. The key technologies are needed to solve in the future included: precision control technology, efficient manufacturing technology, composite parts manufacturing technology.


CONVERTER ◽  
2021 ◽  
pp. 79-85
Author(s):  
Guo Lin

3D printing technology is a rapid prototyping technology, which has been gradually applied in the mechanical automation manufacturing industry. 3D printing technology of mechanical parts is an important development direction of advanced mechanical automation manufacturing technology. At present, the research and development of SLM is a new hotspot in the field of rapid prototyping at home and abroad. The application of this technology can not only reduce the processing time, avoid the resource consumption caused by repeated adjustment of parameters, and make the mechanical manufacturing more accurate, more economical and more efficient. Based on this, this paper focuses on the application of 3D printing technology in mechanical manufacturing automation, and takes SLM as the research object, expounds the basic composition and forming principle of SLM. Based on the comparison of SLM technology at home and abroad, the future development direction of SLM technology is analyzed. At the same time, this paper designs SLM equipment with high efficiency, high cost performance, large range and traditional machining methods. The experimental results show that the 3D printing technology of metal parts is an important development direction of advanced mechanical automation manufacturing technology. The development direction of metal 3D printing in the future is to develop a portable and intelligent 3dslm device with high efficiency, high cost performance, high processing capacity and combination with traditional machining methods.


2018 ◽  
Vol 786 ◽  
pp. 342-347 ◽  
Author(s):  
Kari Mäntyjärvi ◽  
Terho Iso-Junno ◽  
Henri Niemi ◽  
Jarmo Mäkikangas

As a new manufacturing method, Additive Manufacturing has begun to get a foothold in the manufacturing industry. The effective exploitation of the technology requires many times a re-design of the product or re-considering the manufacturing technology. Design for additive manufacturing differs considerably from design to other manufacturing methods, therefore design guidelines for additive manufacturing has been developed. The purpose of this paper is to present a new variant of the Design for Manufacturing and Assembly (DFMA) method which supports additive manufacturing.


Sign in / Sign up

Export Citation Format

Share Document