The Analysis of Flow Characteristics for the High-Speed Train with Strong Crosswind Using CFD

2011 ◽  
Vol 66-68 ◽  
pp. 850-854
Author(s):  
Yong Liu ◽  
Ning Ping Cao

High-speed trains are easily got overturned in strong crosswind. This paper aims to analyze the fluid field of high-speed train under different distortion angles by using computational fluid dynamics (CFD), hybrid grid method and finite volume method. The results shows that the vortexes roll by the separated airflow are alternating occur and develop along the body from the top and bottom. It causes a strong affect to the lateral stability of the train.

2013 ◽  
Vol 361-363 ◽  
pp. 1536-1542
Author(s):  
Zhou Shi ◽  
Jun Li Guo ◽  
Wei Feng Su ◽  
Shuang Yang Zhang

The special dynamic pulsating air pressure acting on the surface of sound barrier can be aroused by passing high speed train, making sound barrier structure and components prone to destruction and other issues. Based 3-D unsteady k-ε two-equation turbulent model, dynamic processes of high-speed trains passing the sound barrier region at different speeds and many factors are simulated and analyzed by using moving mesh finite volume method. The results of dynamic numerical calculated pulsating air pressure results and the effecting rule of various parameters were obtained, and compared with the measured data. It is showed that the air pressure value increases with the increasing train speed and the dynamic numerical calculated pulsating air pressure curves shape and effecting rule of parameters are all well matched with the measured data, but the air pressure value is slightly larger. At last, based on the results of numerical calculation, the addition of static air pressure value caused by high speed train is put forward.


2011 ◽  
Vol 97-98 ◽  
pp. 712-715
Author(s):  
Jian Lin Xu ◽  
Yuan Gui Mei ◽  
Fan Yang ◽  
Xin Liu

The air flow around the high-speed train passing through a tunnel is three dimensional, compressible and unsteady in nature. This paper carried out the numerical simulation of it and evaluated the effect of nose shapes of high-speed trains on tunnel entry/exit waves radiated directly from tunnel entrance or exit. The elliptical, parabolic and conical nose shapes were analyzed. A commercial CFD code STAR-CD based on the finite volume method was used applying the SIMPLE algorithm and a moving grid technology. The comparison study shows that though the patterns of tunnel entry waves or exit waves induced by high-speed trains with above three nose shapes are similar, the amplitudes of them are different. The wave amplitude of elliptical shape is the highest, and that of conical shape is the lowest, which implies that with the nose shape be more streamlined and slender, it might be more likely to reduce the amplitudes of tunnel entry/exit waves.


2000 ◽  
Vol 44 (03) ◽  
pp. 170-185
Author(s):  
Hideo Orihara ◽  
Hideaki Miyata

A new simulation method based on computational fluid dynamics (CFD) is developed for a semiplaning boat with a transom stern in unsteady motion. The time-dependent Reynolds-averaged Navier-Stokes (RANS) equation is discretized by the finite-volume method and solved by the MAC-type solution algorithm, The free-surface treatment in this study is based on the density function method. The motion of the boat is simultaneously solved by combining the equation of the motion of the boat with the flow computation, and the effect of the boat motion is implemented by the moving grid method in the flow computation. Simulations for two types of practical high-speed boats are performed in the Froude number range from 0.5 to 1.0 and the results are compared with experimental ones. It is demonstrated that this method can simulate both the flow about the boat and the running attitude in free-to-run condition with a sufficient degree of accuracy and that it can be used as an effective tool for the development of hull form of practical high-speed boats.


2021 ◽  
pp. 147592172110360
Author(s):  
Dongming Hou ◽  
Hongyuan Qi ◽  
Honglin Luo ◽  
Cuiping Wang ◽  
Jiangtian Yang

A wheel set bearing is an important supporting component of a high-speed train. Its quality and performance directly determine the overall safety of the train. Therefore, monitoring a wheel set bearing’s conditions for an early fault diagnosis is vital to ensure the safe operation of high-speed trains. However, the collected signals are often contaminated by environmental noise, transmission path, and signal attenuation because of the complexity of high-speed train systems and poor operation conditions, making it difficult to extract the early fault features of the wheel set bearing accurately. Vibration monitoring is most widely used for bearing fault diagnosis, with the acoustic emission (AE) technology emerging as a powerful tool. This article reports a comparison between vibration and AE technology in terms of their applicability for diagnosing naturally degraded wheel set bearings. In addition, a novel fault diagnosis method based on the optimized maximum second-order cyclostationarity blind deconvolution (CYCBD) and chirp Z-transform (CZT) is proposed to diagnose early composite fault defects in a wheel set bearing. The optimization CYCBD is adopted to enhance the fault-induced impact response and eliminate the interference of environmental noise, transmission path, and signal attenuation. CZT is used to improve the frequency resolution and match the fault features accurately under a limited data length condition. Moreover, the efficiency of the proposed method is verified by the simulated bearing signal and the real datasets. The results show that the proposed method is effective in the detection of wheel set bearing faults compared with the minimum entropy deconvolution (MED) and maximum correlated kurtosis deconvolution (MCKD) methods. This research is also the first to compare the effectiveness of applying AE and vibration technologies to diagnose a naturally degraded high-speed train bearing, particularly close to actual line operation conditions.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 830
Author(s):  
Jaehoon Kim

Durability is a critical issue concerning energy-harvesting devices. Despite the energy-harvesting device’s excellent performance, moving components, such as the metal spring, can be damaged during operation. To solve the durability problem of the metal spring in a vibration-energy-harvesting (VEH) device, this study applied a non-contact magnetic spring to a VEH device using the repulsive force of permanent magnets. A laboratory experiment was conducted to determine the potential energy-harvesting power using the magnetic spring VEH device. In addition, the characteristics of the generated power were studied using the magnetic spring VEH device in a high-speed train traveling at 300 km/h. Through the high-speed train experiment, the power generated by both the metal spring VEH device and magnetic spring VEH device was measured, and the performance characteristics required for a power source for wireless sensor nodes in high-speed trains are discussed.


2010 ◽  
Vol 29-32 ◽  
pp. 835-840 ◽  
Author(s):  
Zhi Peng Feng ◽  
Ji Ye Zhang ◽  
Wei Hua Zhang

As the speed of train increases, flow-induced vibration of trains passing through tunnels has become a subject of discussion, to investigate this phenomenon, a simplified geometric model and a vehicle dynamics model of a high-speed train traveling through a tunnel were built. To analyze the unsteady three-dimensional flow around the train, the 3-D, transient, viscous, compressible Reynolds-averaged Navier-Stokes equations combined with the k- two-equation turbulence model were solved with the finite volume method. The motion of the train was carried out using the technique of sliding grid method. The dynamics response of the train was obtained by means of the computational multi-body dynamics calculation. Meanwhile the running safety and riding comfort of the train were analyzed. With the numerical simulation, the variation of aerodynamic forces was obtained. The research founds that, vibration of the train increases drastically during it passing through a tunnel. The running safety and riding quality of the train are reduced greatly but they are in the safe range.


Author(s):  
Dilong Guo ◽  
Wen Liu ◽  
Junhao Song ◽  
Ye Zhang ◽  
Guowei Yang

The aerodynamic force acting on the pantograph by the airflow is obviously unsteady and has a certain vibration frequency and amplitude, while the high-speed train passes through the tunnel. In addition to the unsteady behavior in the open-air operation, the compressive and expansion waves in the tunnel will be generated due to the influence of the blocking ratio. The propagation of the compression and expansion waves in the tunnel will affect the pantograph pressure distribution and cause the pantograph stress state to change significantly, which affects the current characteristics of the pantograph. In this paper, the aerodynamic force of the pantograph is studied with the method of the IDDES combined with overset grid technique when high speed train passes through the tunnel. The results show that the aerodynamic force of the pantograph is subjected to violent oscillations when the pantograph passes through the tunnel, especially at the entrance of the tunnel, the exit of the tunnel and the expansion wave passing through the pantograph. The changes of the pantograph aerodynamic force can reach a maximum amplitude of 106%. When high-speed trains pass through tunnels at different speeds, the aerodynamic coefficients of the pantographs are roughly the same.


Author(s):  
F Cakici ◽  
E Kahramanoglu ◽  
A D Alkan

Along with the development of computer technology, the capability of Computational Fluid Dynamics (CFD) to conduct ‘virtual computer experiments’ has increased. CFD tools have become the most important tools for researchers to deal with several complex problems. In this study, the viscous approach called URANS (Unsteady Reynolds Averaged Navier-Stokes) which has a fully non-linear base has been used to solve the vertical ship motions and added resistance problems in head waves. In the solution strategy, the FVM (Finite Volume Method) is used that enables numerical discretization. The ship model DTMB 5512 has been chosen for a series of computational studies at Fn=0.41 representing a high speed case. Firstly, by using CFD tools the TF (Transfer Function) graphs for the coupled heave- pitch motions in deep water have been generated and then comparisons have been made with IIHR (Iowa Institute of Hydraulic Research) experimental results and ordinary strip theory outputs. In the latter step, TF graphs of added resistance for deep water have been generated by using CFD and comparisons have been made only with strip theory.


2017 ◽  
Vol 159 (A4) ◽  
Author(s):  
F Cakici ◽  
E Kahramanoglu ◽  
A D Alkan

Along with the development of computer technology, the capability of Computational Fluid Dynamics (CFD) to conduct ‘virtual computer experiments’ has increased. CFD tools have become the most important tools for researchers to deal with several complex problems. In this study, the viscous approach called URANS (Unsteady Reynolds Averaged Navier-Stokes) which has a fully non-linear base has been used to solve the vertical ship motions and added resistance problems in head waves. In the solution strategy, the FVM (Finite Volume Method) is used that enables numerical discretization. The ship model DTMB 5512 has been chosen for a series of computational studies at Fn=0.41 representing a high speed case. Firstly, by using CFD tools the TF (Transfer Function) graphs for the coupled heave-pitch motions in deep water have been generated and then comparisons have been made with IIHR (Iowa Institute of Hydraulic Research) experimental results and ordinary strip theory outputs. In the latter step, TF graphs of added resistance for deep water have been generated by using CFD and comparisons have been made only with strip theory.


2020 ◽  
Vol 27 (1) ◽  
pp. 198-209
Author(s):  
Jian Du ◽  
Xi-feng Liang ◽  
Gui-bo Li ◽  
Hong-lei Tian ◽  
Ming-zhi Yang

Sign in / Sign up

Export Citation Format

Share Document