Experimental Investigation of Emissions Characteristics of Small Diesel Engine Fuelled by Blended Crude Palm Oil

2014 ◽  
Vol 660 ◽  
pp. 462-467
Author(s):  
Amir Khalid ◽  
M.D. Anuar ◽  
Azwan Sapit ◽  
Azahari Razali ◽  
Bukhari Manshoor ◽  
...  

Biodiesel is an alternative, decomposable and biological-processed fuel that has similar characteristics with mineral diesel which can be used directly into diesel engines. Crude palm oil (CPO) is one of the vegetable oil that has potential for use as a fuel in diesel engine. However, Biodiesel is also an oxygenated fuel and more density, viscosity meaning it contains influences the emissions production during burning process. Despite years of improvement attempts, the key issue in using crude palm oil fuels is oxidation stability, high viscosity and much oxygen comparing to diesel fuel. Thus, the improvement of performance and emission exhausted from biodiesel fuels is urgently required to meet the future performance and emission regulations. Purpose of this study is to explore how significant the effect of biodiesel blends on the exhaust emission with different speed. The engine speed was varied from 1500-2500 rpm and CPO blending ratio from 5-15 vol% (B5-B15).The emission parameter have been tested in term of opacity, hydrocarbon (HC), nitrogen oxide (NOX), carbon dioxide (CO2 ) and oxygen (O2). Increased blends of biodiesel ratio is found to enhance the combustion process, resulting in decreased the HC emissions and also other exhaust emission element. The improvement of combustion process is expected to be strongly influenced by oxygenated fuel in biodiesel content.

2013 ◽  
Vol 315 ◽  
pp. 517-522 ◽  
Author(s):  
Amir Khalid ◽  
Shahrul Azmir Osman ◽  
M. Norrizam Mohamad Jaat ◽  
Norrizal Mustaffa ◽  
Siti Mariam Basharie ◽  
...  

Bio fuels based on vegetable oils offer the advantage being a sustainable, annually renewable source of automobile fuel. Despite years of improvement attempts, the key issue in using vegetable oil-based fuels is oxidation stability, stoichiometric point, bio-fuel composition, antioxidants on the degradation and much oxygen with comparing to diesel gas oil. Thus, the improvement of emissions exhausted from diesel engines fueled by biodiesel derived from palm oil is urgently required to meet the future stringent emission regulations. Purpose of this study is to explore how significant the effects of palm oil blending ratio on combustion process that strongly affects the vehicles performance and exhaust emissions. The engine speed was varied from 15003000 rpm, load test condition varied by Dynapack chassis dynamometer from 050% and palm oil blending ratio from 515vol% (B5B15). Increased blends of biodiesel ratio is found to enhance the combustion process, resulting in decreased the HC emissions with nearly equal of engine performance. The improvement of combustion process is expected to be strongly influenced by oxygenated fuel in biodiesel content.


2021 ◽  
Vol 11 (23) ◽  
pp. 11502
Author(s):  
Jun Cong Ge ◽  
Sam Ki Yoon ◽  
Jun Hee Song

Vegetable oil as an alternative fuel for diesel engine has attracted much attention all over the world, and it is also expected to achieve the goal of global carbon neutrality in the future. Although the product after transesterification, biodiesel, can greatly reduce the viscosity compared with vegetable oil, the high production cost is one of the reasons for restricting its extensive development. In addition, based on the current research on biodiesel in diesel engines, it has been almost thoroughly investigated. Therefore, in this study, crude palm oil (CPO) was directly used as an alternative fuel to be blended with commercial diesel. The combustion, engine performance and emissions were investigated on a 4-cylinder, turbocharged, common rail direct injection (CRDI) diesel engine fueled with different diesel-CPO blends according to various engine loads. The results show that adding CPO to diesel reduces the maximum in-cylinder pressure and maximum heat release rate to 30 Nm and 60 Nm. The most noteworthy finding is that the blend fuels reduce the emissions of hydrocarbons (HC), nitrogen oxides (NOx) and smoke, simultaneously. On the whole, diesel fuel blended with 30% CPO by volume is the best mixing ratio based on engine performance and emission characteristics.


2013 ◽  
Vol 845 ◽  
pp. 61-65 ◽  
Author(s):  
Amir Khalid ◽  
Norrizal Mustaffa ◽  
Ahmad Jais Alimin ◽  
Bukhari Manshoor ◽  
Siti Mariam Basharie ◽  
...  

Crude palm oil (CPO) is one of the vegetable oil that has potential for use as a fuel in diesel engine. Despite years of improvement attempts, the high viscosity and the major chemically bound oxygen component in the biodiesel fuel play as a key element during combustion process. Purpose of this study is to explore how significant the effect of preheated biodiesel blends on the engine performance and emission. The blending of biodiesel was varied from 5vol%(B5)~ 45vol%(B45) and preheated fuel temperature from 40°C~60°C. The engine speed was varied from 1500 rpm~3000 rpm and the load test conditions of 100% are considered. The performances parameter study of diesel engine in brake power, torque and flywheel torque are described together with the emissions parameter such as opacity, hydrocarbon (HC), nitrogen oxide (NOx), carbon oxide (CO), carbon dioxide (CO2) and oxygen (O2). Under high load condition, preheated biodiesel blends were found enhancing the combustion process, resulting in better performances. Increased preheated fuel temperature, higher in torque value and brake power increases significantly as the engine speed increases.


2014 ◽  
Vol 1016 ◽  
pp. 582-586 ◽  
Author(s):  
Tayfun Ozgur ◽  
Erdi Tosun ◽  
Ceyla Ozgur ◽  
Gökhan Tuccar ◽  
Kadir Aydın

In this study the performance, exhaust emission characteristics and combustion process of the engine fueled with hydrogen-diesel blends were compared to diesel fuel. Hydrogen was blended with diesel fuel at the volumetric ratios of 5%, 10% and 20%. AVL BOOST software was dedicated to simulate the performance and emission values for various blends of hydrogen with diesel fuel. The simulation results showed that hydrogen addition to diesel fuel improve both engine performance and exhaust emmisions.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2941
Author(s):  
Wojciech Tutak ◽  
Arkadiusz Jamrozik ◽  
Karol Grab-Rogaliński

The main objective of this study was assessment of the performance, emissions and combustion characteristics of a diesel engine using RME–1-butanol blends. In assessing the combustion process, great importance was placed on evaluating the stability of this process. Not only were the typical COVIMEP indicators assessed, but also the non-burnability of the characteristic combustion stages: ignition delay, time of 50% heat release and the end of combustion. The evaluation of the combustion process based on the analysis of heat release. The tests carried out on a 1-cylinder diesel engine operating at a constant load. Research and evaluation of the combustion process of a mixture of RME and 1-butanol carried out for the entire range of shares of both fuels up to 90% of 1-butanol energetic fraction. The participation of butanol in combustion process with RME increased the in-cylinder peak pressure and the heat release rate. With the increase in the share of butanol there was noted a decrease in specific energy consumption and an increase in engine efficiency. The share of butanol improved the combustion stability. There was also an increase in NOx emissions and decrease in CO and soot emissions. The engine can be power by blend up to 80% energy share of butanol.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3837
Author(s):  
Mohammad I. Jahirul ◽  
Farhad M. Hossain ◽  
Mohammad G. Rasul ◽  
Ashfaque Ahmed Chowdhury

Utilising pyrolysis as a waste tyre processing technology has various economic and social advantages, along with the fact that it is an effective conversion method. Despite extensive research and a notable likelihood of success, this technology has not yet seen implementation in industrial and commercial settings. In this review, over 100 recent publications are reviewed and summarised to give attention to the current state of global tyre waste management, pyrolysis technology, and plastic waste conversion into liquid fuel. The study also investigated the suitability of pyrolysis oil for use in diesel engines and provided the results on diesel engine performance and emission characteristics. Most studies show that discarded tyres can yield 40–60% liquid oil with a calorific value of more than 40 MJ/kg, indicating that they are appropriate for direct use as boiler and furnace fuel. It has a low cetane index, as well as high viscosity, density, and aromatic content. According to diesel engine performance and emission studies, the power output and combustion efficiency of tyre pyrolysis oil are equivalent to diesel fuel, but engine emissions (NOX, CO, CO, SOX, and HC) are significantly greater in most circumstances. These findings indicate that tyre pyrolysis oil is not suitable for direct use in commercial automobile engines, but it can be utilised as a fuel additive or combined with other fuels.


2014 ◽  
Vol 699 ◽  
pp. 648-653 ◽  
Author(s):  
Bahaaddein K.M. Mahgoub ◽  
Suhaimi Hassan ◽  
Shaharin Anwar Sulaiman

In this review, a series of research papers on the effects of hydrogen and carbon monoxide content in syngas composition on the performance and exhaust emission of compression ignition diesel engines, were compiled. Generally, the use of syngas in compression ignition (CI) diesel engine leads to reduce power output due to lower heating value when compared to pure liquid diesel mode. Therefore, variation in syngas composition, especially hydrogen and carbon monoxide (Combustible gases), is suggested to know the appropriate syngas composition. Furthermore, the simulated model of syngas will help to further explore the detailed effects of engine parameters on the combustion process including the ignition delay, combustion duration, heat release rate and combustion phasing. This will also contribute towards the efforts of improvement in performance and reduction in pollutants’ emissions from CI diesel engines running on syngas at dual fuel mode. Generally, the database of syngas composition is not fully developed and there is still room to find the optimum H2 and CO ratio for performance, emission and diesel displacement of CI diesel engines.


Sign in / Sign up

Export Citation Format

Share Document