The Technology of Mig-Mag Welding with Low-Frequency Modulation of Arc Current

2014 ◽  
Vol 682 ◽  
pp. 426-430 ◽  
Author(s):  
S.A. Solodsky ◽  
N.Yu. Lugovtsova ◽  
I.S. Borisov

The given paper suggests a new approach towards implementation of arc current low frequency modulating method in MAG, MIG-welding. The process facilitates controlling heat and crystallization processes, regulates the time of the weld pool formation and crystallization. Theoretical study allowed formulating the main criteria of receiving strong permanent joints to produce structures with advanced reliability as it creates favorable conditions for producing a more balanced deposited metal structure and reducing the heat-affected zone. Regulating the time of weld pool formation and crystallization improves weld formation and increases labor productivity when welding sheet metals.

2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Guoliang Wang ◽  
Hongyi Li

This paper considers the H∞ control problem for a class of singular Markovian jump systems (SMJSs), where the jumping signal is not always available. The main contribution of this paper introduces a new approach to a mode-independent (MI) H∞ controller by exploiting the nonfragile method. Based on the given method, a unified control approach establishing a direct connection between mode-dependent (MD) and mode-independent controllers is presented, where both existence conditions are given in terms of linear matrix inequalities. Moreover, another three cases of transition probability rate matrix (TRPM) with elementwise bounded uncertainties, being partially unknown and to be designed are analyzed, respectively. Numerical examples are used to demonstrate the effectiveness of the proposed methods.


2015 ◽  
Vol 770 ◽  
pp. 28-33 ◽  
Author(s):  
M.A. Kuznetsov ◽  
Svetlana A. Barannikova ◽  
Evgeniy A. Zernin ◽  
A.V. Filonov ◽  
D.S. Kartcev

The effect on the deposited metal structure of nanostructured modifiers introduced into the weldpool has been studied. Methods have been developed for determining the concentration of nanostructured powders of tungsten, molybdenum and Al2O3 in protective gas and for defining their optimal concentration. The influence of nanopowders on the structure of deposited metal was examined in consumable electrode arc welding employing the austenitic steel (chemical composition: C – 0,12%, Cr – 18%, Ni – 10%,Ti – 1%) as deposit and 1.2-mm welding wire manufactured from the austenitic steel (chemical composition: C – 0,12%, Cr – 18%, Ni – 9%,Ti – 1%). Addition of nanostructured powders of tungsten, molybdenum and Al2O3 to the weldpool has shown positive effect on the structure of metal in arc welding. It is shown that introducing the powders decreases dendrite size and leads to the formation of a more equilibrium microstructure of the weld.


Geophysics ◽  
2020 ◽  
Vol 85 (1) ◽  
pp. R11-R28 ◽  
Author(s):  
Kun Xiang ◽  
Evgeny Landa

Seismic diffraction waveform energy contains important information about small-scale subsurface elements, and it is complementary to specular reflection information about subsurface properties. Diffraction imaging has been used for fault, pinchout, and fracture detection. Very little research, however, has been carried out taking diffraction into account in the impedance inversion. Usually, in the standard inversion scheme, the input is the migrated data and the assumption is taken that the diffraction energy is optimally focused. This assumption is true only for a perfectly known velocity model and accurate true amplitude migration algorithm, which are rare in practice. We have developed a new approach for impedance inversion, which takes into account diffractive components of the total wavefield and uses the unmigrated input data. Forward modeling, designed for impedance inversion, includes the classical specular reflection plus asymptotic diffraction modeling schemes. The output model is composed of impedance perturbation and the low-frequency model. The impedance perturbation is estimated using the Bayesian approach and remapped to the migrated domain by the kinematic ray tracing. Our method is demonstrated using synthetic and field data in comparison with the standard inversion. Results indicate that inversion with taking into account diffraction can improve the acoustic impedance prediction in the vicinity of local reflector discontinuities.


2020 ◽  
Vol 38 (4) ◽  
pp. 355-362
Author(s):  
Yosuke OGINO ◽  
Masahiro IIDA ◽  
Satoru ASAI ◽  
Shohei KOZUKI ◽  
Naoya HAYAKAWA ◽  
...  

2021 ◽  
Author(s):  
Joaquin Gonzalez ◽  
Diego M. Mateos ◽  
Matias Cavelli ◽  
Alejandra Mondino ◽  
Claudia Pascovich ◽  
...  

Recently, the sleep-wake states have been analysed using novel complexity measures, complementing the classical analysis of EEGs by frequency bands. This new approach consistently shows a decrease in EEG's complexity during slow-wave sleep, yet it is unclear how cortical oscillations shape these complexity variations. In this work, we analyse how the frequency content of brain signals affects the complexity estimates in freely moving rats. We find that the low-frequency spectrum - including the Delta, Theta, and Sigma frequency bands - drives the complexity changes during the sleep-wake states. This happens because low-frequency oscillations emerge from neuronal population patterns, as we show by recovering the complexity variations during the sleep-wake cycle from micro, meso, and macroscopic recordings. Moreover, we find that the lower frequencies reveal synchronisation patterns across the neocortex, such as a sensory-motor decoupling that happens during REM sleep. Overall, our works shows that EEG's low frequencies are critical in shaping the sleep-wake states' complexity across cortical scales.


2022 ◽  
Vol 130 (1) ◽  
pp. 59
Author(s):  
А.М. Кузьменко ◽  
В.Ю. Иванов ◽  
А.Ю. Тихановский ◽  
А.Г. Пименов ◽  
А.М. Шуваев ◽  
...  

Experimental and theoretical study of submillimeter (terahertz) spectroscopic and magnetic properties of the rare-earth aluminum borate HoAl3(BO3)4 were performed at temperatures 3–300 K. In the transmittance spectra a number of resonance lines were detected at frequencies 2–35 cm–1 for different radiation polarizations. These modes were identified as transitions between the lower levels of the ground multiplet of the Ho3+ ion split by the crystal field, including both transitions from the ground state to the excited ones and transitions between the excited states. The established excitation conditions of the observed modes and the simulation of the spectra made it possible to separate the magnetic and electric dipole transitions and to determine the energies of the corresponding states, their symmetry, and the matrix elements of the transitions. Low-frequency lines that do not fit into the established picture of the electron states of Ho3+ were also found; these lines, apparently, correspond to the ions with the distorted by defects local symmetry of the crystal field.


Author(s):  
Xinfeng Kan ◽  
Dengcui Yang ◽  
Zhengzhi Zhao ◽  
Jiquan Sun

Abstract Wire arc additive manufacture (WAAM) technology has a good development prospect, and can be used to manufacture large metal components with complex shapes in combination with traditional machining equipment. This paper adjusts the parameters from the perspective of heat input and arc control. It is found that the stacking quality of 316L stainless steel is the best when the arc voltage is 40V and the arc current is 360A. It is proposed to obtain the flat layers by pressure machining after every layer is stacked, which can create favorable conditions for manufacturing large-size components. And through the hot rolling experiment, it is proved that pressure machining can improve the density and uniformity of the microstructure, and thus enhance the comprehensive mechanical properties of components built by WAAM.


2008 ◽  
Vol 11 (5-6) ◽  
pp. 398-401 ◽  
Author(s):  
B. Boudjelida ◽  
A. Sobih ◽  
A. Bouloukou ◽  
S. Boulay ◽  
S. Arshad ◽  
...  

Author(s):  
Ralf Schleiffer ◽  
Hans-Jürgen Sebastian ◽  
Erik K. Antonsson

Abstract Problems in the field of engineering design represent an important class of real world problems that typically require a fuzzy and imprecise representation. This article presents and discusses a new approach to model this type of problem, by incorporating linguistic descriptions together with a variety of user-defined trade-off strategies. An interactive computer application is introduced, using stochastic optimization to solve the design task by producing a specially desired output under the given environmental conditions which are partly caused by the personal preferences of the engineer and by the expectations of the customer. It utilizes a randomized evolutionary technique, made suitable for the class of problems at hand, to generate and to optimize design solutions that are later identified by a clustering algorithm. Moreover test problems that were solved by the application are considered. In all cases the good solutions were obtained by evaluating only an extremely small fraction of all possible designs.


Sign in / Sign up

Export Citation Format

Share Document