The Application of Fuzzy PID Control Algorithm in Variable Frequency Speed Regulation System of Glass Edge Grinding Machine

2014 ◽  
Vol 697 ◽  
pp. 151-155
Author(s):  
Bing Deng ◽  
Guo Qiang Shen

Aiming at the deficiencies of traditional PID control algorithm, the application of Fuzzy PID control algorithm is proposed in variable frequency speed regulation system of glass edge grinding machine. The design of fuzzy PID controller is presented in the paper. The paper not only introduces the system principle and models for inverter and AC asynchronous motor but also tells the principle of Fuzzy PID Controller and its design method. A simulation model including traditional PID Controller and Fuzzy PID Controller is established in MATLAB/Simulink. Through the analysis of the difference between the two controlling outputs, the better performance of Fuzzy PID Controller in response speed, accuracy and stability is proved effectively. The result can be used as important criterion to the practical application of Fuzzy PID control algorithm.

2013 ◽  
Vol 284-287 ◽  
pp. 2291-2295
Author(s):  
Man Chen Xiong ◽  
Ling Long Wang ◽  
Yi Heng Jiang

Parameter self-setting fuzzy PID control algorithm for control drying temperature is proposed to improve the problem about big fluctuations in temperature and high pellet broken rate of traditional control on Cold pressure ball drying system in this paper, and the controller create intelligence temperature control system through combine fuzzy control and PID control. We establish fuzzy controller, preparation of fuzzy look-up table in PLC and combined with PID control module to realize fuzzy PID control algorithm, through the computer simulation to analyze the fuzzy PID controller control effect.


2014 ◽  
Vol 945-949 ◽  
pp. 2568-2572
Author(s):  
Si Yuan Wang ◽  
Guang Sheng Ren ◽  
Pan Nie

The test rig for hydro-pneumatic converter used in straddle type monorail vehicles was researched, and its electro-pneumatic proportional control system was set up and simulated based on AMESim/Simulink. Compared fuzzy-PID (Proportion Integral Derivative) controller with PID controller through fuzzy logic tool box in Simulink, the results indicate that, this electro-pneumatic proportional control system can meet design requirements better, and fuzzy-PID controller has higher accuracy and stability than PID controller.


Author(s):  
Bambang Sumantri ◽  
Eko Henfri Binugroho ◽  
Ilham Mandala Putra ◽  
Rika Rokhana

The two-wheeled electric skateboard (TWS) is designed for a personal vehicle. A Fuzzy-PID control strategy is designed and implemented for controlling its motion. Basically, motions control of the TWS is performed by balancing the pitch position of the TWS. Performance of the designed controller is demonstrated experimentally. The Fuzzy algorithm updates the PID gains and therefore it can handle the changing of the TWS load. Contribution of Fuzzy-PID in reducing the electric energy consumption, which is an important issue in electrical system, is also evaluated. The Fuzzy-PID successes to reduce the electric energy consumption of the TWS compared to the conventional PID.


2012 ◽  
Vol 241-244 ◽  
pp. 1248-1254
Author(s):  
Feng Chen Huang ◽  
Hui Feng ◽  
Zhen Li Ma ◽  
Xin Hui Yin ◽  
Xue Wen Wu

Fuzzy control, based on traditional Proportional-Integral-Derivative (PID) control, is used to improve the management of a hydro-junction’s sluice scheduling. In this study, we combined the PID and Fuzzy control theories and determined the PID parameters of the fuzzy self-tuning method of a hydro-junction’s sluice. A fuzzy self-tuning PID controller and its algorithm were designed. In hydro-junction sluice control, the Fuzzy PID controller can modify PID parameters in real-time, resulting in a more dynamic response. The application of the fuzzy self-tuning PID controller in the CiHuai River project information integration system yielded very good results.


2013 ◽  
Vol 341-342 ◽  
pp. 892-895
Author(s):  
Jun Chao Zhang ◽  
Shao Hong Jing

The introduction of the AQC boiler has complex effects on the temperature of Tertiary air, traditional PID is difficult to achieve the effective control. Combined the method of the conventional PID with the fuzzy control theory, a fuzzy self-tuning PID controller is designed. Compared with traditional PID, results of simulation show that the fuzzy PID controller improves not only the adaptability and robustness of the system, but also the system's static and dynamic performance.


2014 ◽  
Vol 953-954 ◽  
pp. 353-356 ◽  
Author(s):  
Fan Yang ◽  
Tong Yang ◽  
Xiao Hong Yang

Aimed at the high inertia and non-linear characteristics of yaw system, a parameter self –tuning fuzzy PID controller is designed. The controller can adjust the PID parameters based on the wind direction variation, and make the turbines track the coming wind timely to obtain maximum power output. Simulation results show that the controller has good real-time performance and robustness compared with the traditional PID control. It can lower the fluctuation and overshoot, and improve the stability of the yaw system significantly.


2012 ◽  
Vol 466-467 ◽  
pp. 1246-1250 ◽  
Author(s):  
Bin Ma ◽  
Qing Bin Meng ◽  
Feng Yu ◽  
Zhong Hua Han ◽  
Chang Tao Wang

In this paper, a controller is designed based on improved fuzzy PID to solve the problem that the dc motor performance of speed and dynamic is poor when using the conventional PID controller for the lack of adaptive capacity of the controller parameters. The improved fuzzy control algorithm is used for the tuning of PID controller to get good speed performances, which automatically adjust the parameter of PID controller according to the motor speed. The simulation results show that the improved fuzzy PID control with the advantages of fast response, small overshoot and strong anti-interference capability can effectively improve the dynamic characteristics and steady state accuracy.


2020 ◽  
Vol 22 (7) ◽  
pp. 2163-2187
Author(s):  
Nguyen Dinh Phu ◽  
Nguyen Nhut Hung ◽  
Ali Ahmadian ◽  
Norazak Senu

2012 ◽  
Vol 605-607 ◽  
pp. 1729-1733
Author(s):  
Qing Rui Meng ◽  
Jian Wang ◽  
Shang Fei Lin

The tramcar runs upward and downward frequently and the load varies with practical requirements, the operating conditions of the hydro-viscous winch are very complex, so the ordinary PID controller cannot meet the requirements of the winch. In order to control the speed of the hydro-viscous winch precisely and obtain perfect starting speed, a new fuzzy-PID control system was designed, the starting process of the winch and the speed regulation characteristics were simulated by using MATLAB. The results show that the designed control system can meet the requirements of the winch well. It can not only obtain perfect starting speed, but also adjust the running speed precisely. Research achievements of this work provide theoretical basis for optimal design and practical applications of the hydro-viscous winch.


Sign in / Sign up

Export Citation Format

Share Document