Development and Evaluation of Mechanical Properties of Al/Ilmenite Nanocomposite

2014 ◽  
Vol 704 ◽  
pp. 32-38
Author(s):  
Lanka Rasidhar ◽  
A. Rama Krishna ◽  
Ch. Srinivasa Rao ◽  
K. Vijaya Lakshmi

In the present investigation, microstructure and mechanical properties of nanocomposites fabricated via stir casting were evaluated. The composites were based on Al (99.7) reinforced with ilmenite nanoparticles. The characterization of the nanoparticles and nanocomposites was investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) facilities. Microstructure of specimens show that reasonable distribution of FeTiO3 nanoparticles in the matrix, secondary phase FeAl3 observed in the microstructure. Ultimate tensile strength and compression tests were carried out in order to identify the mechanical properties. The hardness of the composites is enhanced with the addition of nanoparticles. The optimum value for ultimate tensile and compression strength are obtained with the addition of 3 % ilmenite nanoparticles. Ductile fracture in tensile fractured samples was observed by fractrography examination.

2019 ◽  
Vol 946 ◽  
pp. 287-292
Author(s):  
Alexander Thoemmes ◽  
Ivan V. Ivanov ◽  
Alexey Ruktuev

The effect of Nb content on microstructure, mechanical properties and phase formation in as-melt and annealed binary Ti-Nb alloys were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) analysis. The content of Nb varied in the range 25-35 mass % leading to significant changes in the microstructure. The annealed and furnace-cooled binary Ti-Nb samples exhibited HCP martensitic α` phase at a Nb content below 27.5 mass % and metastable BCC β phase at higher contents of Nb. The mechanical properties of alloys depended strongly on the Nb content and type of the dominating phase.


2011 ◽  
Vol 194-196 ◽  
pp. 1369-1373 ◽  
Author(s):  
Chun Xiang Xu ◽  
Hui Ju ◽  
Yang Zhou

Effect of Ca addition on the morphology modification in Mg-7Al-0.8Zn-0.2Mn-1Si (AS71) alloys has been investigated using X-ray diffraction (XRD), optical microscopy (OM), and scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and various testing machines. The results show that when adding 0.1 wt% Ca, a small fraction of Mg2Si change from Chinese script type to polygonal type; with the Ca addition up to 0.3 wt%, edges and angles of polygonal type Mg2Si phase are changed; further increase in Ca addition, the morphology of Mg2Si is changed to strip-like or spot-like one. Meanwhile, the addition of Ca results in the morphology of β- Mg17Al12 phase changing from discontinuous net-like to dispersive island-like. Ca exists as solid-soluting atomic in the matrix with small Ca addition while in the form of CaSi2 with large Ca addition. Optimal mechanical properties can be achieved when Ca addition is 0.3 wt%.


2005 ◽  
Vol 494 ◽  
pp. 211-216 ◽  
Author(s):  
B. Dimčić ◽  
M. Vilotijević ◽  
D. Božić ◽  
D. Rajnović ◽  
M.T. Jovanović

The structural and compression mechanical properties of Ti3Al-based intermetallics produced by powder metallurgy techniques have been studied. The as-milled powders were compacted by hot pressing to non-porous homogenous compacts. Prior to compression tests, all compacts were homogenized by a solution treatment at 1050°C (a+β region) for 1h, followed by water quenching. The compression tests were performed from room temperature to 500°C in vacuum at a strain rate of 1 3 10 4 . 2 − − × s . Detailed microstructural characterization was evaluated by scanning electron microscopy (SEM), followed by energy dispersive spectroscopy (EDS) and X-ray diffraction analysis.


2006 ◽  
Vol 309-311 ◽  
pp. 927-930 ◽  
Author(s):  
J. Miguel Oliveira ◽  
S.S. Silva ◽  
João F. Mano ◽  
Rui L. Reis

In this study, it is shown that it is possible to develop 3D-porous bilayer hydroxyapatite/chitosan scaffolds by means of combining a sintering and a freeze-drying technique. Scanning electron microscopy (SEM/EDS) studies revealed that the scaffolds possess a well-defined orientation and anisotropic porosity, with pore size ranging between 50-350 µm. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) patterns evidenced the formation of crystalline hydroxyapatite. Moreover, the compression tests revealed that these scaffolds have adequate mechanical properties for being used in tissue engineering of osteochondral defects.


2017 ◽  
Vol 899 ◽  
pp. 442-447
Author(s):  
Carlos Triveño Rios ◽  
C. Bolfarini ◽  
Walter José Botta Filho ◽  
Claudio Shyinti Kiminami

In this work, the microestrutural characterization and mechanical properties of atomized Al-9Si-3Cu alloy powders and extruded samples are presented. The microstructure was evaluated by a combination of X-ray diffraction, optical microscopy and scanning electron microscopy. The mechanical properties of extruded samples were also characterized by tensile test and hardness measurements. The results revealed that the powder particles and the extruded samples are constituted by α-Al, intermetallic and metastable phases. The extruded samples obtained by the use of smaller atomized particles show lower ductility than with larger particles. The same behavior was observed with low extrusion temperature than with high temperatures. It was also observed minor variations in the yield strength and hardness with variation in the size of the powder particles.


2012 ◽  
Vol 620 ◽  
pp. 314-319
Author(s):  
Nur Amira Mamat Razali ◽  
Fauziah Abdul Aziz ◽  
Saadah Abdul Rahman

Hardwood is wood from angiosperm trees. The characteristic of hardwood include flowers, endosperm within seeds and the production of fruits that contain the seeds. This paper aims to discuss the preparation and characterization of cellulose obtained from hardwood. The hardwood Merbau (Intsia bijuga) was chosen as raw material in this study. Alkaline treatment and delignification methods were used for the preparation of cellulose. Acid hydrolysis was employed to produce cellulose nanocrystal (CNC). The treated and untreated samples were characterized using x-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The final product, from both trated and untreated samples were then compared.


2012 ◽  
Vol 476-478 ◽  
pp. 1031-1035
Author(s):  
Wei Min Liu ◽  
Xing Ai ◽  
Jun Zhao ◽  
Yong Hui Zhou

Al2O3-TiC-ZrO2ceramic composites (ATZ) were fabricated by hot-pressed sintering. The phases and microstructure of the composites were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The relative density and mechanical properties (flexural strength, fracture toughness and Vicker’s hardness) of the composites were tested. The results show that the microstructure of the composites was the gray core-white rim. With the increase of sintering temperature, the relative density and mechanical properties of the composites increased first and then decreased. The composite sintered at 1705°C has the highest synthetical properties, and its relative density, flexural strength, fracture toughness and Vickers hardness are 98.3%,970MPa,6.0 MPa•m1/2and 20.5GPa, respectively.


2021 ◽  
pp. 095400832110055
Author(s):  
Yang Wang ◽  
Yuhui Zhang ◽  
Yuhan Xu ◽  
Xiucai Liu ◽  
Weihong Guo

The super-tough bio-based nylon was prepared by melt extrusion. In order to improve the compatibility between bio-based nylon and elastomer, the elastomer POE was grafted with maleic anhydride. Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA) were used to study the compatibility and micro-distribution between super-tough bio-based nylon and toughened elastomers. The results of mechanical strength experiments show that the 20% content of POE-g-MAH has the best toughening effect. After toughening, the toughness of the super-tough nylon was significantly improved. The notched impact strength was 88 kJ/m2 increasing by 1700%, which was in line with the industrial super-tough nylon. X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) were used to study the crystallization behavior of bio-based PA56, and the effect of bio-based PA56 with high crystallinity on mechanical properties was analyzed from the microstructure.


2012 ◽  
Vol 174-177 ◽  
pp. 508-511
Author(s):  
Lin Lin Yang ◽  
Yong Gang Wang ◽  
Yu Jiang Wang ◽  
Xiao Feng Wang

BiFeO3 polyhedrons had been successfully synthesized via a hydrothermal method. The as-prepared products were characterized by power X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The possible mechanisms for the formation of BiFeO3 polyhedrons were discussed. Though comparison experiments, it was found that the kind of precursor played a key role on the morphology control of BiFeO3 crystals.


Sign in / Sign up

Export Citation Format

Share Document