Study on Potato Starch Wastewater Pretreatment Using Flocculation

2011 ◽  
Vol 71-78 ◽  
pp. 2644-2648 ◽  
Author(s):  
Xia Zhao ◽  
Yang Li Zhao ◽  
Zhong Lin Chen ◽  
He Ming Luo ◽  
Hui Xia Feng ◽  
...  

In this paper, flocculation process was applied to the treatment of potato starch wastewater. The Influence of flocculent types, dosage of flocculants, pH, dosage of coagulant aid polyacrylamide (PAM) and sedimentation time on flocculation efficiency was studied, and principal factors of influence flocculation pretreatment of potato starch wastewater and the optimum flocculation conditions were determined by orthogonal experiment. On the optimum conditions which had the advantage of better treatment efficiency with chemical oxygen demand (COD) removal rate of 40.55% , the suitable pH(7) in favour of the following biological treatment, high yield of sludge of 1.59g/L wastewater which could be used as animal feed or fertilizer and increase economic benefits.

2013 ◽  
Vol 68 (1) ◽  
pp. 257-260 ◽  
Author(s):  
Yujie Feng ◽  
Junfeng Liu ◽  
Limin Zhu ◽  
Jinzhi Wei

The clomazone herbicide wastewater was treated using a combined technology composed of electrochemical catalytic oxidation and biological contact degradation. A new type of electrochemical reactor was fabricated and a Ti/SnO2 electrode was chosen as the anode in electrochemical-oxidation reactor and stainless steel as the cathode. Ceramic rings loaded with SnO2 were used as three-dimensional electrodes forming a packed bed. The operation parameters that might influence the degradation of organic contaminants in the clomazone wastewater were optimized. When the cell voltage was set at 30 V and the volume of particle electrodes was designed as two-thirds of the volume of the total reactor bed, the chemical oxygen demand (COD) removal rate could reach 82% after 120 min electrolysis, and the ratio of biochemical oxygen demand (BOD)/COD of wastewater increased from 0.12 to 0.38. After 12 h degradation with biological contact oxidation, the total COD removal rate of the combined technology reached 95%, and effluent COD was below 120 mg/L. The results demonstrated that this electrocatalytic oxidation method can be used as a pretreatment for refractory organic wastewater before biological treatment.


Archaea ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Shuo Wang ◽  
Jianzheng Li ◽  
Guochen Zheng ◽  
Guocheng Du ◽  
Ji Li

Hydrogen-producing acetogens (HPA) have a transitional role in anaerobic wastewater treatment. Thus, bioaugmentation with HPA cultures can enhance the chemical oxygen demand (COD) removal efficiency and CH4yield of anaerobic wastewater treatment. Cultures with high degradation capacities for propionic acid and butyric acid were obtained through continuous subculture in enrichment medium and were designated as Z08 and Z12. Bioaugmentation with Z08 and Z12 increased CH4production by glucose removal to 1.58. Bioaugmentation with Z08 and Z12 increased the COD removal rate in molasses wastewater from 71.60% to 85.84%. The specific H2and CH4yields from COD removal increased by factors of 1.54 and 1.63, respectively. Results show that bioaugmentation with HPA-dominated cultures can improve CH4production from COD removal. Furthermore, hydrogen-producing acetogenesis was identified as the rate-limiting step in anaerobic wastewater treatment.


2013 ◽  
Vol 67 (3) ◽  
pp. 587-593 ◽  
Author(s):  
L. Yerushalmi ◽  
M. Alimahmoodi ◽  
C. N. Mulligan

Simultaneous removal of carbon, nitrogen and phosphorus was examined along with reduced generation of biological sludge during the treatment of synthetic wastewater and hog waste by the BioCAST technology. This new multi-environment wastewater treatment technology contains both suspended and immobilized microorganisms, and benefits from the presence of aerobic, microaerophilic, anoxic and anaerobic conditions for the biological treatment of wastewater. The influent concentrations during the treatment of synthetic wastewater were 1,300–4,000 mg chemical oxygen demand (COD)/L, 42–115 mg total nitrogen (TN)/L, and 19–40 mg total phosphorus (TP)/L. The removal efficiencies reached 98.9, 98.3 and 94.1%, respectively, for carbon, TN and TP during 225 days of operation. The removal efficiencies of carbon and nitrogen showed a minimal dependence on the nitrogen-to-phosphorus (N/P) ratio, while the phosphorus removal efficiency showed a remarkable dependence on this parameter, increasing from 45 to 94.1% upon the increase of N/P ratio from 3 to 4.5. The increase of TN loading rate had a minimal impact on COD removal rate which remained around 1.7 kg/m3 d, while it contributed to increased TP removal efficiency. The treatment of hog waste with influent COD, TN and TP concentrations of 960–2,400, 143–235 and 25–57 mg/L, respectively, produced removal efficiencies up to 89.2, 69.2 and 47.6% for the three contaminants, despite the inhibitory effects of this waste towards biological activity. The treatment system produced low biomass yields with average values of 3.7 and 8.2% during the treatment of synthetic wastewater and hog waste, respectively.


Author(s):  
Yunpeng Jing ◽  
Jian Li ◽  
Yimin Mei ◽  
Xiao Liu ◽  
Xuelan Yu ◽  
...  

Abstract This study investigated the physical and chemical properties of a single or combination of permeable materials which can be used as fillers in the Sponge City program in China. Four types of fillers, perlite, coral sand, vermiculite and ceramsite, were selected from six alternative fillers by an analytic hierarchy process. The optimal city sponge, which consists of vermiculite (10 cm), ceramsite (15 cm), perlite (15 cm), coral sand (20 cm) and Canna indica L, was found by the orthogonal experiment (L16(45)). The results of the simulated rainwater experiment of the optimal sponge showed that the permeability coefficient K10, NH3-N, TP and COD removal rate were 1.20 ± 0.23 mm/s, 96.6 ± 0.2%, 36.8 ± 0.07% and 9.6 ± 0.07% respectively. The results suggested that the optimal sponge had an excellent treatment effect on NH3-N in rainwater while ensuring rapid infiltration. It provided a simple, economical and effective method for rainwater treatment and the Sponge City program in the future.


2001 ◽  
Vol 43 (11) ◽  
pp. 51-58 ◽  
Author(s):  
P. C. Male ◽  
W. A. Pretoruis

Wastewater high in phenolic content (948 mg/l) and dissolved solids (5.4 g/l) had to be treated to remove most of the organic material and toxic compounds. A laboratory scale High Pressure (3 bar) Bioreactor (HPB) was developed and operated to treat the wastewater using a ceramic ultra filtration membrane as biomass separator. The performance of the system was compared to a normal activated sludge plant (ASP) using sludge settling for separation. The HPB was more stable than the ASP, which twice became unstable with a resulting biomass loss. Both reactors removed 90% of the chemical oxygen demand (COD) loading, reducing the phenol concentration below 20 mg/l. The maximum COD removal rate of the HPB was 28 kg/m3.d compared to 15 kg/m3.d of the ASP, while the HPB achieved 16-32 times better oxygen transfer than the ASP. It was concluded that the HPB was the preferred treatment system compared to the ASP, when treating high strength inhibitory wastewaters, due to its stable operating performance and high COD removal rate.


1993 ◽  
Vol 28 (3) ◽  
pp. 597-620 ◽  
Author(s):  
Catherine N. Mulligan ◽  
Bechara F. Safi ◽  
Jacques Meunier ◽  
Jean Chebib

Abstract The SNC multiplate reactor (1,200 L) has been developed and tested to determine chemical oxygen demand (COD) removal, nutrient requirement, and gas production from the anaerobic treatment of effluents generated at the Agropur (Notre Dame-du-Bon-Conseil, Quebec) and Nutrinor cheese dairies (Chambord, Quebec). At the Agropur plant, wastewater (3,000 mg/L COD) was treated the best at a retention time of 12 h. Using this retention time, effluents containing whey with organic loads of 10.2 to 41.6 kg COD/m3/day could be treated at a 84% COD removal rate. When the reactor was subjected to shock by increasing the organic load suddenly from 8.9 to 31 kg COD/m3/day, the total COD removal decreased to 72% and then returned to 86% after 7 days. Hydrology tests indicated that the reactor functions as a series of completely mixed stirred tanks. At Nutrinor, using a 12-h retention time and diluted whey permeate (20,000 mg/L COD), total COD removal was 86% and gas production was 12.0 m3/m3/day for a loading of 36.5 kg COD/m3/day. Nutrient supplementation was not required. For experiments performed with different proportions of wastewater (2,000 mg/L COD) to whey permeate (70,000 mg/L COD) results of 89% total and 93% soluble COD removal with a gas production of 11 m3/m3/day for a loading of 25 kg COD/m3/day were obtained. Retention times were varied from 18 to 60 h to correspond to initial CODs of 20,000 to 70,000 mg/L. In conclusion, this reactor functions in a superior manner to other published anaerobic treatment systems.


2011 ◽  
Vol 255-260 ◽  
pp. 2962-2966
Author(s):  
Rong Gui Fan ◽  
Chun E Li ◽  
Yong Xin Bai ◽  
Da Qing Huang ◽  
Liao Wei Fang ◽  
...  

The electrochemical oxidation of wastewater from DDNP production was investigated using a boron-doped diamond (BDD) thin film electrode. The effects of operating factors such as cell voltage, interelectrode distance and additive NaCl have been studied. This study showed that the chemical oxygen demand (COD) reduction is most influenced by the applied cell voltage. Higher current densities resulting from higher cell voltages increase the formation of oxidative reagents resulting in an increased COD removal rate. The maximum COD removal was 57% after 210 min, with an energy consumption of 14.90 KWh·kg-1 COD when cell voltage was 12V, interelectrode distance was 3cm and additive NaCl concentration was 1g·L-1. The use of BDD thin film electrode for the treatment of DDNP production wastewater appears commercially feasible.


2013 ◽  
Vol 703 ◽  
pp. 33-36
Author(s):  
Xia Tian ◽  
Yan Xi Shi ◽  
Guo Lin Lin ◽  
Qing Zhu Zheng

This study aimed at, pre-treatment of sweet potato starch wastewater and acquisition the application conditions of environmental materials though coagulation precipitation. The removal rates of COD and turbidity were investigated by process to find kind and quantity of suitable coagulant, quantity of coagulate aids, pH and setting time. The results showed that poly aluminum ferric chloride (PAFC) was chosen as an optimum coagulant for effective treatment. The optimal coagulation precipitation conditions were determined as follows: pH8, dosage of PAFC 1200mg/l, PAM100mg/l, sedimentation time 30 min. At optimum conditions of coagulation precipitation stages, the removal rate of COD and turbidity reached 25.8% and 67.5%, respectively. Therefore, coagulation process reduced the burden of subsequent wastewater treating.


2012 ◽  
Vol 66 (9) ◽  
pp. 2014-2019
Author(s):  
Tang Yun-lu ◽  
Liu Dong-fang ◽  
Meng Xian-rong ◽  
Yu Jie ◽  
Wang Jin ◽  
...  

A new method based on rotating biological contactor (RBC) was employed for solving the problems of long hydraulic retention times (HRT) low specific surface area and organic loading rates (OLR) in conventional RBCs. The system showed its particular adsorption ability of microorganisms in the biofilm-attaching period. Microbes on the first cage were observed in comparison with the second one. Packing biodisc also had a good shock load tolerance. It was observed that the system performance improved at higher HRTs, while at the increased level of input OLR, the removal performance worsened slightly. The positive role of rotational speed in the treatment of municipal wastewater was more pronounced in the range of 10–12 rpm. Chemical oxygen demand (COD) removal rate achieved 94% under the optimal operating conditions, which were HRT of 1.5 h, rotational speed of 9.9 rpm. The modified RBC system is highly beneficial to engineering application for better system performance and lower energy consumption.


Sign in / Sign up

Export Citation Format

Share Document