Research on a New Type of Energy Dissipation Brace

2011 ◽  
Vol 71-78 ◽  
pp. 3816-3820
Author(s):  
Jie Yjing Sui ◽  
Wen Feng Liu

This paper presents one new configuration called little-character-toggle-brace. This paper analyses the effect of different toggle-brace position in the story and different angle of the toggle-brace to the magnification factor and provides the damping radio of the structure. Based on vibration control test of the structure with energy dissipation devices, the dynamic behavior and dynamic response of the structure with little-character brace, diagonal brace or little-character- toggle-brace have been investigated. The different control effects of the structure with the different energy dissipation braces have been studied. The result demonstrates that the little-character-toggle- brace is the best energy dissipation brace.

2020 ◽  
Vol 10 (2) ◽  
pp. 572 ◽  
Author(s):  
Gangbing Song ◽  
Hong-Nan Li ◽  
Steve C.S. Cai

Many engineering systems, from subsea pipelines to space structures, from moving vehicles to stationary skyscrapers, are subject to unwanted vibration excitations. Often vibration control can be considered as a problem of energy dissipation and vibration damping. The aims of this issue are to accumulate, disseminate, and promote new knowledge about vibration control, especially for topics related to energy dissipation methods for vibration damping. Topics in this issue reflect the start-of-the-arts in the field of vibration control, such as inerter dampers and pounding tuned mass dampers (PTMDs). This special issue also reports other types of new energy dissipation devices, including a multi-unit particle damper, a nonlinear eddy current damper, and layered dampers. Also reported in this issue are structural elements with innovative designs to dissipate energy. In addition, this special issue also reports two research studies on the dynamic responses of a structural foundation and an earth-retaining structure. Though most papers in this special issue are related to passive methods, one paper reports a semi-active vibration control via magnetorheological dampers (MRDs), and another two papers report active vibration controls using piezoelectric transducers and inertial actuators, respectively.


2019 ◽  
Vol 29 (2) ◽  
pp. 74-100 ◽  
Author(s):  
Waseem Sarwar ◽  
Rehan Sarwar

Abstract Retrofit and structural design with vibration control devices have been proven repeatedly to be feasible seismic hazard mitigation approach. To control the structural response; supplemental energy dissipation devices have been most commonly used for energy absorption. The passive control system has been successfully incorporated in mid to high rise buildings as an appropriate energy absorbing system to suppress seismic and wind-induced excitation. The considerable theses that are highlighted include vibration control devices, the dynamic behavior of devices; energy dissipation mechanism, devices installation approach and building guidelines for structural analysis and design employing vibration control devices also, design concern that is specific to building with vibration control devices. The following four types of supplemental damping devices have been investigated in this review: metallic devices, friction devices, viscous fluid devices, and viscoelastic devices. Although numerous devices installation techniques available, more precisely, devices installation approaches have been reviewed in this paper, including Analysis and Redesign approach (Lavan A/R), standard placement approach, simplified sequential search algorithm, and Takewaki approach.


2018 ◽  
Vol 763 ◽  
pp. 867-874
Author(s):  
Yu Shu Liu ◽  
Ke Peng Chen ◽  
Guo Qiang Li ◽  
Fei Fei Sun

Buckling Restrained Braces (BRBs) are effective energy dissipation devices. The key advantages of BRB are its comparable tensile and compressive behavior and stable energy dissipation capacity. In this paper, low-cycle fatigue performance of domestic BRBs is obtained based on collected experimental data under constant and variable amplitude loadings. The results show that the relationship between fatigue life and strain amplitude satisfies the Mason-Coffin equation. By adopting theory of structural reliability, this paper presents several allowable fatigue life curves with different confidential levels. Besides, Palmgren-Miner method was used for calculating BRB cumulative damages. An allowable damage factor with 95% confidential level is put forward for assessing damage under variable amplitude fatigue. In addition, this paper presents an empirical criterion with rain flow algorithm, which may be used to predict the fracture of BRBs under severe earthquakes and provide theory and method for their engineering application. Finally, the conclusions of the paper were vilified through precise yet conservative prediction of the fatigue failure of BRB.


Author(s):  
Shijing Wu ◽  
Haibo Zhang ◽  
Xiaosun Wang ◽  
Zeming Peng ◽  
Kangkang Yang ◽  
...  

Backlash is a key internal excitation on the dynamic response of planetary gear transmission. After the gear transmission running for a long time under load torque, due to tooth wear accumulation, the backlash between the tooth surface of two mating gears increases, which results in a larger and irregular backlash. However, the increasing backlash generated by tooth accumulated wear is generally neglected in lots of dynamics analysis for epicyclic gear trains. In order to investigate the impact of backlash generated by tooth accumulated wear on dynamic behavior of compound planetary gear set, in this work, first a static tooth surface wear prediction model is incorporated with a dynamic iteration methodology to get the increasing backlash generated by tooth accumulated wear for one pair of mating teeth under the condition that contact ratio equals to one. Then in order to introduce the tooth accumulated wear into dynamic model of compound planetary gear set, the backlash excitation generated by tooth accumulated wear for each meshing pair in compound planetary gear set is given under the condition that contact ratio equals to one and does not equal to one. Last, in order to investigate the impact of the increasing backlash generated by tooth accumulated wear on dynamic response of compound planetary gear set, a nonlinear lumped-parameter dynamic model of compound planetary gear set is employed to describe the dynamic relationships of gear transmission under the internal excitations generated by worn profile, meshing stiffness, transmission error, and backlash. The results indicate that the introduction of the increasing backlash generated by tooth accumulated wear makes a significant influence on the bifurcation and chaotic characteristics, dynamic response in time domain, and load sharing behavior of compound planetary gear set.


2013 ◽  
Vol 475-476 ◽  
pp. 1559-1562
Author(s):  
Jun Dai

The roof model of the palace timber buildings was established according to the construction technology of the Ying-tsao fa-shih. Based on its analysis of dynamic behavior with shaking table test and ANSYS finite element software, the dynamic behavior of structure and its maximal response under different conditions were gotten, and also the dynamic magnification factor of the beams layer and the whole structure were gotten, at last the results got by shaking table test was compared with the numerical simulation. Research shows that the nature frequency of the model is 1.486 Hz which is much bigger than that of the whole structure; the maximal displacement of beam layer gradually increases with the increase of ground motion intensity and the height of structure; the vibration isolation performance of semi-rigid tenon-mortise joints in rare earthquake (400gal) is better than that in moderate earthquake (220gal) and frequent earthquake (110gal); the dynamic magnification factor between layers was about 1, and roof 0.9 or so.


2013 ◽  
Vol 13 (01) ◽  
pp. 1350010 ◽  
Author(s):  
IOANNIS G. RAFTOYIANNIS ◽  
GEORGE T. MICHALTSOS

Telescopic cranes are usually steel beam systems carrying a load at the tip while comprising at least one constant and one moving part. In this work, an analytical model suitable for the dynamic analysis of telescopic cranes boom is presented. The system considered herein is composed — without losing generality — of two beams. The first one is a jut-out beam on which a variable in time force is moving with constant velocity and the second one is a cantilever with length varying in time that is subjected to its self-weight and a force at the tip also changing with time. As a result, the eigenfrequencies and modal shapes of the second beam are also varying in time. The theoretical formulation is based on a continuum approach employing the modal superposition technique. Various cases of telescopic cranes boom are studied and the analytical results obtained in this work are tabulated in the form of dynamic response diagrams.


1999 ◽  
Author(s):  
Sungsoo Na ◽  
Liviu Librescu

Abstract A study of the dynamical behavior of aircraft wings modeled as doubly-tapered thin-walled beams, made from advanced anisotropic composite materials, and incorporating a number of non-classical effects such as transverse shear, and warping inhibition is presented. The supplied numerical results illustrate the effects played by the taper ratio, anisotropy of constituent materials, transverse shear flexibility, and warping inhibition on free vibration and dynamic response to time-dependent external excitations. Although considered for aircraft wings, this analysis and results can be also applied to a large number of structures such as helicopter blades, robotic manipulator arms, space booms, tall cantilever chimneys, etc.


Sign in / Sign up

Export Citation Format

Share Document