Thermal Comfort and Energy Performance Assessment for Residential Building in Temperate Continental Climate

2015 ◽  
Vol 725-726 ◽  
pp. 1375-1380 ◽  
Author(s):  
Sergey Korniyenko

The increase of thermal comfort and energy performance of buildings is an actual problem of modern architecture and construction. The paper based on field study gives the assessment of thermal comfort and energy performance for multifamily residential building in temperate continental climate. The program of the field study included the measurements of microclimate parameters in rooms of various apartments (first stage) and of the thermal performance of building envelope elements (second stage). The results of the field study showed that the thermal comfort and thermal performance of building envelope elements were not provided. The deterioration of thermal comfort and thermal performance of the building can be caused by numerous defects allowed in the course of construction. Thermal modernization of the building is necessary for the purpose of elimination of the specified defects and increase of energy performance.

2020 ◽  
Vol 10 (13) ◽  
pp. 4489
Author(s):  
Zakaria Che Muda ◽  
Payam Shafigh ◽  
Norhayati Binti Mahyuddin ◽  
Samad M.E. Sepasgozar ◽  
Salmia Beddu ◽  
...  

The increasing need for eco-friendly green building and creative passive design technology in response to climatic change and global warming issues will continue. However, the need to preserve and sustain the natural environment is also crucial. A building envelope plays a pivotal role in areas where the greatest heat and energy loss often occur. Investment for the passive design aspect of building envelopes is essential to address CO 2 emission. This research aims to explore the suitability of using integral-monolithic structural insulation fibre-reinforced lightweight aggregate concrete (LWAC) without additional insulation as a building envelope material in a high-rise residential building in the different climatic zones of the world. Polypropylene and steel fibres in different dosages were used in a structural grade expanded clay lightweight aggregate concrete. Physical and thermal properties of fibre reinforced structural LWAC, normal weight concrete (NWC) and bricks were measured in the lab. The Autodesk@Revit-GBS simulation program was implemented to simulate the energy consumption of a 29-storey residential building with shear wall structural system using the proposed fibre-reinforced LWAC materials. Results showed that energy savings between 3.2% and 14.8% were incurred in buildings using the fibre-reinforced LWAC across various climatic regions as compared with traditional NWC and sand-cement brick and clay brick walls. In conclusion, fibre-reinforced LWAC in hot-humid tropical and temperate Mediterranean climates meet the certified Green Building Index (GBI) requirements of less than 150 kW∙h∙m−2. However, in extreme climatic conditions of sub-arctic and hot semi-arid desert climates, a thicker wall or additional insulation is required to meet the certified green building requirements. Hence, the energy-saving measure is influenced largely by the use of fibre-reinforced LWAC as a building envelope material rather than because of building orientation.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 895 ◽  
Author(s):  
Ilaria Ballarini ◽  
Giovanna De Luca ◽  
Argun Paragamyan ◽  
Anna Pellegrino ◽  
Vincenzo Corrado

Directive 2010/31/EU promotes the refurbishment of existing buildings to change them into nearly zero-energy buildings (nZEBs). Within this framework, it is of crucial importance to guarantee the best trade-off between energy performance and indoor environmental quality (IEQ). The implications of a global refurbishment scenario on thermal and visual comfort are assessed in this paper pertaining to an existing office building. The retrofit actions applied to achieve the nZEB target consist of a combination of envelope and technical building systems refurbishment measures, involving both HVAC and lighting. Energy and comfort calculations were carried out through dynamic simulation using Energy Plus and DIVA, for the thermal and visual performance assessments, respectively. The results point out that energy retrofit actions on the building envelope would lead to significant improvements in the thermal performance, regarding both energy savings (−37% of the annual primary energy for heating) and thermal comfort. However, a daylighting reduction would occur with a consequent higher electricity demand for lighting (36%). The research presents a detailed approach applicable to further analyses aimed at optimizing the energy efficiency measures in order to reduce the imbalance between visual and thermal comfort and to ensure the best performance in both domains.


2016 ◽  
Vol 835 ◽  
pp. 416-422
Author(s):  
Fahanim Abdul Rashid ◽  
Asrul Mahjuddin Ressang Aminuddin ◽  
Norafida Ab. Ghaffar

Over the past decade many studies were conducted to investigate the thermal performance of terraced houses in Malaysia. It was found that this housing typology failed to address the need for thermal comfort and alternatives to the narrow frontage with deep plan have been proposed with simulated good thermal performance. Although this is good progress for new generation of terraced houses, millions of units of terraced houses are still in use and new units with the outdated existing plans continued to get built due to consistently very high demand due to progressive urbanisation and rapid economic developments. Therefore, it is imperative that the thermal comfort issue for existing terraced houses is dealt with and through this paper a comparison between single and double storey terraced houses is made through analysis of indoor environmental monitoring (ambient temperature, relative humidity and air velocity) of two (2) selected case studies in Merlimau, Melaka. Contrary to popular belief, it is found that there is no statistical difference between both sets of indoor temperature and relative humidity between the case studies. This finding is indicative of the consistent and stable temporal temperature highs and lows in a 24 hour cycle despite the difference in indoor volume and distance between the ground floor and the roof cavity. Much of the reason is due to the materiality of the terraced houses construction and unsealed and uninsulated building envelope. Therefore, further research into improving the thermal performance of existing terraced houses of any typology have to be conducted to allow thermal comfort and to reduce reliance on high energy consuming air-conditioning.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2469
Author(s):  
Evi Lambie ◽  
Dirk Saelens

Since households are one of the most energy-intensive sectors in Europe, retrofit of dwellings is promoted to increase energy efficiency. Recent research, however, shows that the energy performance after retrofit does not always meet the target values, which can be caused by amongst other things, a deviating building envelope performance. This paper compares the theoretical and measured building envelope performance for a real-life case study in post-retrofit state, in order to illustrate the limitations of calculation methods and characterization models. First, the performance is evaluated on building scale by verifying the correspondence between the default theoretical heat loss coefficient (HLC) and the measured HLC, which was determined by following the guidelines formulated within IEA EBC Annex 58 and Annex 71. In order to illustrate the limitations of the standard calculation method in real-life conditions, the theoretical variability of the HLC is evaluated, generated by variating infiltration heat losses and heat exchange with neighboring dwellings. Second, the performance is investigated on a component scale by assessing the theoretical and measured thermal resistances, identified from heat flux tests. Additionally, nonhomogeneous assembled components and air leaks are simulated to verify probable causes for the locally varying measured values and to illustrate the limitations of calculations and characterization methods. The results illustrate the limitations of the calculation methods by the assessment of the strong variability of the theoretical HLC, depending on assumptions regarding infiltration and heat exchange with neighboring dwellings. In addition, component simulations indicated that deficiencies on a component scale could be caused by a nonhomogeneous assembly and air cavity flows of the component. Moreover, a detailed assessment of an unreliable thermal resistance illustrates the limitations of the used characterization method. Finally, a contrast was found between the quite good performance on building scale (15% deviation between the theoretical and measured HLC) and poor performance on a component scale (only one out of nine monitored components met their theoretical target values), which illustrates the complexity of the building envelope performance.


2018 ◽  
Vol 3 (7) ◽  
pp. 357
Author(s):  
Lobna Hassan Ali Hassan Elgheriani ◽  
Parid Wardi ◽  
AbdulBasit Ali Ali Ahmed

Natural ventilation is an effectual passive design approach to create a better indoor thermal condition as well as energy efficiency. The primary goal of building design is providing a healthy and comfortable indoor environment titled as sustainable architecture. Literature suggests that the significant feature that alteration has to take place on for better energy performance is the envelope design. This paper aims to augment the Window to Wall Ratio (WWR), orientation and courtyard corridor size for improving the design of naturally ventilated courtyard high-rise residential buildings. Briefly, the findings indicate that contending with WWR, orientation and courtyard corridor size could increase the potential of improving its natural ventilation and thus, thermal performance.


The research aims at studying the potential of reusing plastic water bottles as a building material and an alternative to traditional bricks, in a way that can minimize waste and hence reduce ecological imbalance. The research compares the energy performance of building with traditional bricks and building with plastic bottle blocks. The researchers built digitally two sample rooms: (3 meter width*3 meter length*3 meter Height) with both materials, Then they took on-site measurements for energy performance of the rooms. The rooms were built on DesignBuilder software in order to help in environmental analysis of buildings, and compare the efficiency of the two materials of sample rooms. Results showed that building with plastic water bottles has some environmental benefits other than reuse of a material that hardly decomposes. It has its effects on energy saving and thermal comfort. Further research and experiments is encouraged as the plastic residue dilemma grows more in modern societies and affects the ecological balance and wild life.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Olumide Ebenezer Jegede ◽  
Ahmad Taki

PurposeThis paper aims to demonstrate the optimization of an existing residential building in a tropical climate using indigenous materials as an alternative to conventional building envelopes to achieve thermal comfort and affordable housing.Design/methodology/approachThis study mainly adopted a quantitative research methodology through a comprehensive simulation study on a selected prototype building. The energy plus simulation tool in DesignBuilder was used to predict the average monthly and annual thermal comfort of a typical residential building in the study area. Also, a cost analysis of the final optimization interventions was conducted to estimate the construction cost savings.FindingsThe comparative analysis of simulation results for the base-case and optimized models indicates potential advantages in replacing conventional building envelope materials with indigenous materials. The base-case simulation results showed that the annual operative temperature is more than the adaptive thermal comfort set points in tropical climates, by 8.26%. This often leads to interventions using mechanical cooling systems, thus triggering overconsumption of energy and increase in CO2 emissions. The building envelope materials for floor, walls and roof were replaced with low U-values indigenous materials until considerable results in terms of thermal comfort and overall building construction cost were achieved. The final simulation results showed that using indigenous materials for the ground floor, external walls and roof could substantially reduce the annual operative temperature by 8%, thereby increasing the predicted three months of thermal comfort in the base-case to nine months annually. Likewise, there was a 32.31%, 35.78% and 41.81% reduction in the annual CO2 emissions, cooling loads and construction costs, respectively.Originality/valueThe knowledge of indigenous materials as an alternative to conventional materials for sustainable buildings is not new. However, most of the available research is focused on achieving affordable housing. There is a dearth of research showing the extent that these indigenous materials can be used to improve indoor thermal comfort in developing countries with tropical climates such as Nigeria.


Buildings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 200 ◽  
Author(s):  
Laurina C. Felius ◽  
Mohamed Hamdy ◽  
Fredrik Dessen ◽  
Bozena Dorota Hrynyszyn

Improving the energy efficiency of existing buildings by implementing building automation control strategies (BACS) besides building envelope and energy system retrofitting has been recommended by the Energy Performance of Buildings Directive (EPBD) 2018. This paper investigated this recommendation by conducting a simulation-based optimization to explore cost-effective retrofitting combinations of building envelope, energy systems and BACS measures in-line with automation standard EN 15232. Two cases (i.e., a typical single-family house and apartment block) were modeled and simulated using IDA Indoor Climate and Energy (IDA-ICE). The built-in optimization tool, GenOpt, was used to minimize energy consumption as the single objective function. The associated difference in life cycle cost, compared to the reference design, was calculated for each optimization iteration. Thermal comfort of the optimized solutions was assessed to verify the thermal comfort acceptability. Installing an air source heat pump had a greater energy-saving potential than reducing heat losses through the building envelope. Implementing BACS achieved cost-effective energy savings up to 24%. Energy savings up to 57% were estimated when BACS was combined with the other retrofitting measures. Particularly for compact buildings, where the potential of reducing heat losses through the envelope is limited, the impact of BACS increased. BACS also improved the thermal comfort.


Sign in / Sign up

Export Citation Format

Share Document