scholarly journals Optimization of building envelopes using indigenous materials to achieve thermal comfort and affordable housing in Abuja, Nigeria

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Olumide Ebenezer Jegede ◽  
Ahmad Taki

PurposeThis paper aims to demonstrate the optimization of an existing residential building in a tropical climate using indigenous materials as an alternative to conventional building envelopes to achieve thermal comfort and affordable housing.Design/methodology/approachThis study mainly adopted a quantitative research methodology through a comprehensive simulation study on a selected prototype building. The energy plus simulation tool in DesignBuilder was used to predict the average monthly and annual thermal comfort of a typical residential building in the study area. Also, a cost analysis of the final optimization interventions was conducted to estimate the construction cost savings.FindingsThe comparative analysis of simulation results for the base-case and optimized models indicates potential advantages in replacing conventional building envelope materials with indigenous materials. The base-case simulation results showed that the annual operative temperature is more than the adaptive thermal comfort set points in tropical climates, by 8.26%. This often leads to interventions using mechanical cooling systems, thus triggering overconsumption of energy and increase in CO2 emissions. The building envelope materials for floor, walls and roof were replaced with low U-values indigenous materials until considerable results in terms of thermal comfort and overall building construction cost were achieved. The final simulation results showed that using indigenous materials for the ground floor, external walls and roof could substantially reduce the annual operative temperature by 8%, thereby increasing the predicted three months of thermal comfort in the base-case to nine months annually. Likewise, there was a 32.31%, 35.78% and 41.81% reduction in the annual CO2 emissions, cooling loads and construction costs, respectively.Originality/valueThe knowledge of indigenous materials as an alternative to conventional materials for sustainable buildings is not new. However, most of the available research is focused on achieving affordable housing. There is a dearth of research showing the extent that these indigenous materials can be used to improve indoor thermal comfort in developing countries with tropical climates such as Nigeria.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Amneh Hamida ◽  
Abdulsalam Alsudairi ◽  
Khalid Alshaibani ◽  
Othman Alshamrani

PurposeBuildings are responsible for the consumption of around 40% of energy in the world and account for one-third of greenhouses gas emissions. In Saudi Arabia, residential buildings consume half of total energy among other building sectors. This study aims to explore the impact of sixteen envelope variables on the operational and embodied carbon of a typical Saudi house with over 20 years of operation.Design/methodology/approachA simulation approach has been adopted to examine the effects of envelope variables including external wall type, roof type, glazing type, window to wall ratio (WWR) and shading device. To model the building and define the envelope materials and quantify the annual energy consumption, DesignBuilder software was used. Following modelling, operational carbon was calculated. A “cradle-to-gate” approach was adopted to assess embodied carbon during the production of materials for the envelope variables based on the Inventory of Carbon Energy database.FindingsThe results showed that operational carbon represented 90% of total life cycle carbon, whilst embodied carbon accounted for 10%. The sensitivity analysis revealed that 25% WWR contributes to a significant increase in operational carbon by 47.4%. Additionally, the efficient block wall with marble has a major embodiment of carbon greater than the base case by 10.7%.Research limitations/implicationsThis study is a contribution to the field of calculating the embodied and operational carbon emissions of a residential unit. Besides, it provides an examination of the impact of each envelope variable on both embodied and operational carbon. This study is limited by the impact of sixteen envelope variables on the embodied as well as operational carbon.Originality/valueThis study is the first attempt on investigating the effects of envelop variables on carbon footprint for residential buildings in Saudi Arabia.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shubham Srivastava ◽  
Abhishek Srivastava ◽  
Sanya Jain ◽  
Nandan Kumar ◽  
Chandra Shekhar Malvi

Purpose This study aims to analyse the variations of thermal comfort inside a building space by using different curtains. Design/methodology/approach Phase change materials (PCMs) such as wax, sand and mixture of sand and wax were used with cotton curtain to compare the results of PCM curtains with the performance of normal cotton curtain against constant heat exposure. Heat exposure was provided with halogen to simulate the solar radiation. Further simulation was performed on ANSYS and experimental results were compared with the simulation results. In addition to this, the results were analysed for optimized performance by calculation root mean square error. Findings It was found that PCM used curtains that have better performance than normal curtain. Furthermore, sand curtain was proved as the best curtain and mixture of sand and wax curtain could replace the sand curtain where there is limitation of weight; also, there was less error between experimental and simulation was reported for sand curtain as compare to other curtains. Research limitations/implications Layers of different PCMs were used before cotton curtain and in modelling assumptions such as one-dimensional heat transfer, uniform thermal conductivity. Originality/value To the best of the authors’ knowledge, there is no such study that was performed earlier.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hamza Laloui ◽  
Noor Hanita Abdul Majid ◽  
Aliyah Nur Zafirah Sanusi

Purpose This paper aims to investigate the impacts of introducing voids combinations on natural ventilation performance in high-rise residential building living unit. Design/methodology/approach This study was carried out through field measurement and computational fluid dynamics methods. The parameters of the study are void types and sizes, and a wind angle was used to formulate case studies. Findings The results indicate that the provision of a single-sided horizontal void larger by 50% increase the indoor air velocity performance up to 322.37% to 0.471 m/s in the living unit and achieves the required velocity for thermal comfort. Originality/value Passive design features are the most desirable techniques to enhance natural ventilation performance in the high-rise residential apartments for thermal comfort and indoor air quality purposes.


Architecture is very responsive to the environmental and climatic factors which affect the built environment with unsteady state. Technology can be used to keep these factors under control by optimizing building design to fit with the surrounding environment and the energy needs. In addition, building envelopes play a major role in achieving thermal comfort for occupants and reducing energy consumption. Building envelopes energy optimization became a leading approach in the architectural research and implementation. This study hypothesizes that using solar shading devices with suitable design decisions of the fenestration affects the daylight level, solar heat gain, visual comfort, and thermal comfort for users. The main objective of this study is to examine the relationships between building envelope design and building energy efficiency through research and simulations. In addition, it explores which combinations of the design elements are the most efficient in terms of lighting and HVAC loads which gives the designers a variety of optimum design solutions to choose the architectural from. This research focuses on the implementation and effectiveness of shading devices, glass type, and window-wall ratio (WWR) in energy optimization through building envelope. The study used MATLAB software for the mathematical model simulation while Revit software was used for the model validation. The study found that south orientation for buildings associated with horizontal shading elements is the best solution in terms of cooling loads in summer. In winter, however, the optimal solution was south orientation with vertical shading elements in terms of heating loads and illuminance levels.


2019 ◽  
Vol 37 (3) ◽  
pp. 250-272 ◽  
Author(s):  
Nwakaego Chikaodinaka Onyenokporo ◽  
Ekele Thompson Ochedi

Purpose The purpose of this paper is to develop a set of affordable retrofit packages that can be applied to existing residential buildings in hot-humid regions to improve occupants’ thermal comfort and reduce energy consumption. Design/methodology/approach A critical review of relevant literature to identify passive design strategies for improving thermal comfort and reducing energy consumption in hot-humid climates with focus on the building envelope was conducted in addition to a simulation study of an existing building typology in study area. Findings There is enormous potential to reduce energy costs and improve thermal comfort through building retrofit packages which is a recent concept in developing countries, such as Nigeria. Analysing the results of the retrofit interventions using building energy simulation helped in developing affordable retrofit packages which had optimum effect in improving indoor comfort temperature to the neutral temperature specified for hot humid Nigeria and further down to 3°C less than that of the reference building used. The use of passive design strategies to retrofit the building might help homeowners reduce their annual energy consumption by up to 46.3 per cent just by improving the indoor thermal comfort. Originality/value In addition to improving thermal comfort and reducing energy consumption, this research identified affordable retrofit packages and considered its cost implications especially to low-income earners who form a larger population of Lagos, Nigeria, as this was not considered by many previous researchers.


2019 ◽  
Vol 23 (5 Part B) ◽  
pp. 2951-2960 ◽  
Author(s):  
Ali Almarzouq ◽  
Ahmad Sakhrieh

The building envelope is the most affecting part in the energy interaction between the buildings and the surrounding. Proper design of the envelope components not only can save the required energy for the building but also can improve the thermal comfort of its occupants. In this research, energy modelling and simulation for a residential building in Amman, Jordan is performed to investigate the effects of glazing design and infiltration rate on energy consumption and thermal comfort. Different design alternatives have been investigated to find the best alternative design to reduce energy use and improve indoor environment. The results showed that replacing single glazing window with double glazing window argon-filled with low emissivity coating can save the consumed energy by 24.7% while degrade the thermal comfort by 1%. Reducing the infiltration rate by 50% can save 19.4% of the energy consumed and improves the thermal comfort by 10%.


2015 ◽  
Vol 725-726 ◽  
pp. 1375-1380 ◽  
Author(s):  
Sergey Korniyenko

The increase of thermal comfort and energy performance of buildings is an actual problem of modern architecture and construction. The paper based on field study gives the assessment of thermal comfort and energy performance for multifamily residential building in temperate continental climate. The program of the field study included the measurements of microclimate parameters in rooms of various apartments (first stage) and of the thermal performance of building envelope elements (second stage). The results of the field study showed that the thermal comfort and thermal performance of building envelope elements were not provided. The deterioration of thermal comfort and thermal performance of the building can be caused by numerous defects allowed in the course of construction. Thermal modernization of the building is necessary for the purpose of elimination of the specified defects and increase of energy performance.


2018 ◽  
Vol 33 ◽  
pp. 02005 ◽  
Author(s):  
Sergey Korniyenko

Energy conservation and human thermal comfort enhancement in buildings is a topical issue of modern architecture and construction. The innovative solution of this problem makes it possible to enhance building ecological and maintenance safety, to reduce hydrocarbon fuel consumption, and to improve life standard of people. The requirements to increase of energy efficiency in buildings should be provided at all the stages of building's life cycle that is at the stage of design, construction and maintenance of buildings. The research purpose is complex analysis of energy efficiency in operated high-rise residential building. Many actions for building energy efficiency are realized according to the project; mainly it is the effective building envelope and engineering systems. Based on results of measurements the energy indicators of the building during annual period have been calculated. The main reason of increase in heat losses consists in the raised infiltration of external air in the building through a building envelope owing to the increased air permeability of windows and balcony doors (construction defects). Thermorenovation of the building based on ventilating and infiltration heat losses reduction through a building envelope allows reducing annual energy consumption. Energy efficiency assessment based on the total annual energy consumption of building, including energy indices for heating and a ventilation, hot water supply and electricity supply, in comparison with heating is more complete. The account of various components in building energy balance completely corresponds to modern direction of researches on energy conservation and thermal comfort enhancement in buildings.


2020 ◽  
Vol 10 (2) ◽  
pp. 75-83
Author(s):  
Banu Çiçek Avcıoğlu ◽  
Hüdayim Başak

There has been a plea for sustainable use of resources since  the twentieth century. Buildings are known to consume forty percent of the world’s resources. Resources such as gas, oil, coal and electrical energy used in heating, cooling and ventilation of buildings are limited, as well as causing air pollution and climate change. For this reason, the energy resources used in the buildings should be used effectively, considering environmental concerns. The aim of this study is to describe the shift in efficient use of energy in buildings using a biomimetic approach in thermoregulative building envelope strategies that support internal thermal comfort. In this study, passive systems integrated into buildings which use solar energy, one of the renewable energy sources for heating, cooling and ventilation purposes have been examined. The methods followed by nature in using solar energy are discussed with the biomimetic approach and suggestions have been made to support the increase of energy efficiency by applying the obtained teachings to passive building envelopes.   Keywords: biomimetics; building envelope; kinetic building envelope; passive strategies; Thermal comfort


2009 ◽  
Vol 4 (2) ◽  
pp. 107-125
Author(s):  
Katherine Gregory ◽  
Behdad Moghtaderi ◽  
Adrian Page

This paper summarises the results of a combined numerical, statistical and experimental study concerned with the use of dissimilar walling systems on the external parts of a given building envelope. The rational behind this “hybrid wall” concept, as opposed to conventional approaches where identical walls are used in a building envelope, is to achieve a more effective distribution of thermal mass across the envelope and, hence, improve the overall thermal performance of the building. The effectiveness of the “hybrid wall” concept was investigated using a series of hypothetical building modules of common Australian residential constructions, namely Light Weight (LW), Brick Veneer (BV), Reverse Brick Veneer (RBV) and Cavity Brick (CB). These designs were examined numerically using a commercial energy rating tool known as “AccuRate”, statistically using JMP software and experimentally using a novel bench-scale setup developed as part of this study. The performance of each design was evaluated by its energy consumption. The numerical predictions and experimental data highlighted that the east and west walls have the most impact on the energy consumption under Australian climatic conditions. It was found that considerable reductions in the energy consumption could be achieved in cases where the hybrid wall concept was implemented through the use of high thermal mass insulated walls on the east and west sides of the building envelope.


Sign in / Sign up

Export Citation Format

Share Document